• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem

    Predicting pain among female survivors of recent interpersonal violence: A proof-of-concept machine-learning approach

    Autor: 
    Lannon, Edward
    ;
    Sanchez-Saez, Francisco
    ;
    Bailey, Brooklynn
    ;
    Hellman, Natalie
    ;
    Kinney, Kerry
    ;
    Williams, Amber
    ;
    Nag, Subodh
    ;
    Kutcher, Matthew E.
    ;
    Goodin, Burel R
    ;
    Rao, Uma
    ;
    Morris, Matthew C.
    Fecha: 
    2021
    Palabra clave: 
    intimate partner violence; domestic violence; pregnancy; Scopus; JCR
    Revista / editorial: 
    Public Library of Science
    Tipo de Ítem: 
    article
    URI: 
    https://reunir.unir.net/handle/123456789/12988
    DOI: 
    https://doi.org/10.1371/journal.pone.0255277
    Dirección web: 
    https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0255277
    Open Access
    Resumen:
    Interpersonal violence (IPV) is highly prevalent in the United States and is a major public health problem. The emergence and/or worsening of chronic pain are known sequelae of IPV; however, not all those who experience IPV develop chronic pain. To mitigate its development, it is critical to identify the factors that are associated with increased risk of pain after IPV. This proof-of-concept study used machine-learning strategies to predict pain severity and interference in 47 young women, ages 18 to 30, who experienced an incident of IPV (i.e., physical and/or sexual assault) within three months of their baseline assessment. Young women are more likely than men to experience IPV and to subsequently develop posttraumatic stress disorder (PTSD) and chronic pain. Women completed a comprehensive assessment of theory-driven cognitive and neurobiological predictors of pain severity and pain-related interference (e.g., pain, coping, disability, psychiatric diagnosis/symptoms, PTSD/trauma, executive function, neuroendocrine, and physiological stress response). Gradient boosting machine models were used to predict symptoms of pain severity and pain-related interference across time (Baseline, 1-,3-,6- follow-up assessments). Models showed excellent predictive performance for pain severity and adequate predictive performance for pain-related interference. This proof-of-concept study suggests that machine-learning approaches are a useful tool for identifying predictors of pain development in survivors of recent IPV. Baseline measures of pain, family life impairment, neuropsychological function, and trauma history were of greatest importance in predicting pain and pain-related interference across a 6-month follow-up period. Present findings support the use of machine-learning techniques in larger studies of post-IPV pain development and highlight theory-driven predictors that could inform the development of targeted early intervention programs. However, these results should be replicated in a larger dataset with lower levels of missing data.
    Mostrar el registro completo del ítem
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • Artículos Científicos WOS y SCOPUS

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    32
    48
    74
    58
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Predicting Posttraumatic Stress Disorder Among Survivors of Recent Interpersonal Violence 

      Morris, Matthew C.; Sanchez-Saez, Francisco; Bailey, Brooklynn; Hellman, Natalie; Williams, Amber; Schumacher, Julie A.; Rao, Uma (SAGE Journals, 2022)
      A substantial minority of women who experience interpersonal violence will develop posttraumatic stress disorder (PTSD). One critical challenge for preventing PTSD is predicting whose acute posttraumatic stress symptoms ...
    • Data Resource Profile: Results Analysis Base of Navarre (BARDENA) 

      Gorricho, Javier; Leache, Leire; Tamayo, Ibai; Sánchez-Sáez, Francisco; Almirantearena, Maite; San Román, Edurne; Ballaz, Jerónimo; Turumbay, Javier; Librero, Julián (International Journal of Epidemiology, 2023)
      Spain has a decentralized health system that operates as a network of 17 regional health services. It is publicly funded (mainly from taxes), and provides universal, free of charge, needs-based care coverage to the resident ...
    • A model-driven approach to generate and deploy videogames on multiple platforms 

      Núñez-Valdez, Edward Rolando ; García-Díaz, Vicente; Cueva Lovelle, Juan Manuel; Saez Achaerandio, Yago; González-Crespo, Rubén (Journal of Ambient Intelligence and Humanized Computing, 06/2017)
      Currently, videogame development for mobile devices is a highly profitable and competitive industry worldwide. This profitability can be ascribed to the popularity that new technologies such as smartphones and tablets have ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja