• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem

    Development of a deep learning model for recognising traffic sings focused on difficult cases

    Autor: 
    De Arriba López, Vanessa
    ;
    Cobos-Guzmán, Salvador (1)
    Fecha: 
    2021
    Palabra clave: 
    autonomous car; CNN; deep learning; image processing; traffic sings; Scopus; WOS(2)
    Tipo de Ítem: 
    article
    URI: 
    https://reunir.unir.net/handle/123456789/12799
    DOI: 
    https://doi.org/10.1007/s12652-021-03609-8
    Dirección web: 
    https://link.springer.com/article/10.1007/s12652-021-03609-8
    Resumen:
    The automotive industry is expanding its efforts to develop new techniques for increasing the level of intelligent driving and create new autonomous cars capable of driving with more intelligent capabilities. Thus, companies in this sector are turning to the development of autonomous cars and more specifically developing software along with more artificial intelligent algorithms. However, to be able to trust these systems, they must be developed very carefully, and use techniques that can increase the level of recognition that will consequently improve the level of safety. One of the most important components in this respect for road users is the correct interpretation of traffic sings. This paper presents a deep learning model based on convolutional neural networks and image processing that can be used to improve the recognition of traffic sings autonomously. The results are focused on difficult cases such as images with lighting problems, blurry traffic sings, hidden traffic sings, and small images. Hence, real cases are used in this study for identifying the existing problems and achieving good performance in traffic signal recognition. Finally, as a result, the configuration of the neural architecture based on three phases of convolutions proposed shows a validation accuracy of 99.3% during the data training. Another comparison carried out with the model ResNet-50 obtained an accuracy of 88.5%. Thus, for this type of application, a high validation accuracy is required as the results of our model demonstrated.
    Mostrar el registro completo del ítem
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • Artículos Científicos WOS y SCOPUS

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    22
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Decision making algorithm for an autonomous guide-robot using fuzzy logic 

      Rainer, J Javier (1); Cobos-Guzmán, Salvador (1); Galán, Ramón (Journal of Ambient Intelligence and Humanized Computing, 08/2018)
      This paper presents a novel method to generate optimal presentations for a Guide-Robot that explains the exhibition to different types of audience. The generation of automatic presentations are selected dynamically regarding ...
    • Fuzzy logic expert system for selecting robotic hands using kinematic parameters 

      Cobos-Guzmán, Salvador (1); Verdú, Elena (1); Herrera-Viedma, Enrique; González-Crespo, Rubén (1) (Journal of Ambient Intelligence and Humanized Computing, 01/04/2020)
      Industry 4.0 is the current industrial revolution and robotics is an important factor for carrying out high dexterity manipulations. However, mechatronic systems are far from human capabilities and sophisticated robotic ...
    • Design of a virtual assistant to improve interaction between the audience and the presenter 

      Cobos-Guzmán, Salvador (1); Nuere Menendez-Pidal, Silvia; de Miguel Álvarez, Laura (1); König, C (Universidad Internacional de la Rioja, 2021)
      This article presents a novel design of a Virtual Assistant as part of a human-machine interaction system to improve communication between the presenter and the audience that can be used in education or general presentations ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioAutorización TFG-M

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja