• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem

    Deep learning approach to Automated data collection and processing of video surveillance in sports activity prediction

    Autor: 
    Zeng, Bin
    ;
    Sanz Prieto, Iván (1)
    ;
    Luhach, Ashish Kr.
    Fecha: 
    2021
    Palabra clave: 
    data collection; deep learning; sports activity; video surveillance; Scopus; WOS(2)
    Tipo de Ítem: 
    article
    URI: 
    https://reunir.unir.net/handle/123456789/12744
    DOI: 
    https://doi.org/10.1007/s10479-021-04348-x
    Dirección web: 
    https://link.springer.com/article/10.1007/s10479-021-04348-x
    Resumen:
    Human activity recognition is one of today's key fields of automated video surveillance. The technology of smart surveillance technology plays a crucial role. Despite efforts in recent years, it is still difficult to recognize human behaviors from live video. Human activity can vary from basic behaviors to complicated behaviors. Depth cameras currently released have an efficient 3D estimate of body connecting locations in the temporal depth map collection. This article proposed a method for recognizing human behavior and considered the challenge of achieving a descriptive marking of activities by labeling individual sub-activities. The behaviors take place over a long period and have many sequential sub-activities. A sports activity prediction of video surveillance framework is proposed in this article. The suggested operation descriptor considers the sequence classification challenge to be the behavior recognition problem. Deep Learning is used to detect human behaviors in the proposed method. The method is tested on two regular identification benchmark functions. Effects of the research revealed that the solution developed exceeds cutting-edge methodologies.
    Mostrar el registro completo del ítem
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • Artículos Científicos WOS y SCOPUS

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    20
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Smart Indoor Positioning/Location and Navigation: A Lightweight Approach 

      Puértolas Montañés, José Antonio; Mendoza Rodríguez, Adriana; Sanz Prieto, Iván (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 06/2013)
      In this paper a new location indoor system is presented, which shows the position and orientation of the user in closed environments, as well as the optimal route to his destination through location tags. This system is ...
    • Artificial intelligence assisted intelligent planning framework for environmental restoration of terrestrial ecosystems 

      Yin, Xinzhe; Li, Jinghua; Nimer Kadry, Seifedine; Sanz Prieto, Iván (1) (Environmental Impact Assessment Review, 01/2021)
      The environmental restoration of terrestrial ecosystems helps to protect the natural world and enhances sustainable land resource development. Modern and efficient approaches for the conservation of ecological functions ...
    • Multi-level integrated health management model for empty nest elderly people's to strengthen their lives 

      Zhang, G.; Guo, Z.; Cheng, Q.; Sanz Prieto, Iván (1); Hamad, A.A. (Elsevier Ltd, 2021)
      The old-age “empty-nest” family in China has become more prevalent in the recent past. This research focused on strengthening the lives of empty nests elderly people during their distress using an appropriate instrumental ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioAutorización TFG-M

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja