Mostrar el registro sencillo del ítem

dc.contributor.authorZeng, Bin
dc.contributor.authorSanz Prieto, Iván
dc.contributor.authorLuhach, Ashish Kr.
dc.date2023
dc.date.accessioned2022-03-29T08:14:38Z
dc.date.available2022-03-29T08:14:38Z
dc.identifier.citationZeng, B., Sanz-Prieto, I. & Luhach, A.K. Deep learning approach to Automated data collection and processing of video surveillance in sports activity prediction. Ann Oper Res (2021). https://doi.org/10.1007/s10479-021-04348-x
dc.identifier.issn0254-5330
dc.identifier.urihttps://reunir.unir.net/handle/123456789/12744
dc.description.abstractHuman activity recognition is one of today's key fields of automated video surveillance. The technology of smart surveillance technology plays a crucial role. Despite efforts in recent years, it is still difficult to recognize human behaviors from live video. Human activity can vary from basic behaviors to complicated behaviors. Depth cameras currently released have an efficient 3D estimate of body connecting locations in the temporal depth map collection. This article proposed a method for recognizing human behavior and considered the challenge of achieving a descriptive marking of activities by labeling individual sub-activities. The behaviors take place over a long period and have many sequential sub-activities. A sports activity prediction of video surveillance framework is proposed in this article. The suggested operation descriptor considers the sequence classification challenge to be the behavior recognition problem. Deep Learning is used to detect human behaviors in the proposed method. The method is tested on two regular identification benchmark functions. Effects of the research revealed that the solution developed exceeds cutting-edge methodologies.es_ES
dc.language.isoenges_ES
dc.publisherSpringeres_ES
dc.relation.ispartofseries;online
dc.relation.urihttps://link.springer.com/article/10.1007/s10479-021-04348-xes_ES
dc.rightsrestrictedAccesses_ES
dc.subjectdata collectiones_ES
dc.subjectdeep learninges_ES
dc.subjectsports activityes_ES
dc.subjectvideo surveillancees_ES
dc.subjectScopuses_ES
dc.subjectJCRes_ES
dc.titleDeep learning approach to Automated data collection and processing of video surveillance in sports activity predictiones_ES
dc.typearticlees_ES
reunir.tag~ARIes_ES
dc.identifier.doihttps://doi.org/10.1007/s10479-021-04348-x


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem