• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem

    Vaccine Hesitancy on Social Media: Sentiment Analysis from June 2011 to April 2019

    Autor: 
    Piedrahita-Valdés, Hilary
    ;
    Piedrahita Castillo, Diego
    ;
    Bermejo-Higuera, Javier
    ;
    Guillem-Saiz, Patricia
    ;
    Bermejo Higuera, Juan Ramón
    ;
    Guillem-Saiz, Javier
    ;
    Sicilia, Juan Antonio
    ;
    Machío-Regidor, Francisco
    Fecha: 
    01/2021
    Palabra clave: 
    vaccine hesitancy; vaccination; opinion mining; sentiment analysis; content analysis; machine learning; social media; Twitter; JCR; Scopus
    Revista / editorial: 
    Vaccines
    Tipo de Ítem: 
    Articulo Revista Indexada
    URI: 
    https://reunir.unir.net/handle/123456789/11270
    DOI: 
    https://doi.org/10.3390/vaccines9010028
    Dirección web: 
    https://www.mdpi.com/2076-393X/9/1/28
    Open Access
    Resumen:
    Vaccine hesitancy was one of the ten major threats to global health in 2019, according to the World Health Organisation. Nowadays, social media has an important role in the spread of information, misinformation, and disinformation about vaccines. Monitoring vaccine-related conversations on social media could help us to identify the factors that contribute to vaccine confidence in each historical period and geographical area. We used a hybrid approach to perform an opinion-mining analysis on 1,499,227 vaccine-related tweets published on Twitter from 1st June 2011 to 30th April 2019. Our algorithm classified 69.36% of the tweets as neutral, 21.78% as positive, and 8.86% as negative. The percentage of neutral tweets showed a decreasing tendency, while the proportion of positive and negative tweets increased over time. Peaks in positive tweets were observed every April. The proportion of positive tweets was significantly higher in the middle of the week and decreased during weekends. Negative tweets followed the opposite pattern. Among users with ≥2 tweets, 91.83% had a homogeneous polarised discourse. Positive tweets were more prevalent in Switzerland (71.43%). Negative tweets were most common in the Netherlands (15.53%), Canada (11.32%), Japan (10.74%), and the United States (10.49%). Opinion mining is potentially useful to monitor online vaccine-related concerns and adapt vaccine promotion strategies accordingly
    Mostrar el registro completo del ítem
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • Artículos Científicos WOS y SCOPUS

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    52
    36
    43
    80
    50
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • A New Mail System for Secure Data Transmission in Cyber Physical Systems 

      Piedrahita Castillo, Diego ; Machio, Francisco ; Bermejo-Higuera, Javier ; Bermejo Higuera, Juan Ramón ; Sicilia, Juan Antonio (International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 12/2020)
      This paper provides a complete study on email requirements, with special emphasis on its security aspects and architecture. It explores how current protocols have evolved, the environment in which they have been developed ...
    • A Secure Email Solution Based on Blockchain 

      Piedrahita, Diego; Bermejo-Higuera, Javier; Machío-Regidor, Francisco (Springer Science and Business Media Deutschland GmbH, 2022)
      Email is one of the most important online communication services between individuals and businesses. The large amount of information that passes through this medium is the object of desire for many attackers who use a whole ...
    • Systematic Approach to Malware Analysis (SAMA) 

      Bermejo-Higuera, Javier; Abad-Aramburu, Carlos; Bermejo Higuera, Juan Ramón; Sicilia Urban, Miguel Ángel; Sicilia, Juan Antonio (Applied Sciences, 02/2020)
      Malware threats pose new challenges to analytic and reverse engineering tasks. It is needed for a systematic approach to that analysis, in an attempt to fully uncover their underlying attack vectors and techniques and find ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja