Artificial intelligence to predict atheroma plaque vulnerability
Autor:
Cilla, Myriam
; Martínez Torres, Javier (1)
; Peña, Estefanía
; Martínez, Miguel Ángel
Fecha:
2020Palabra clave:
Tipo de Ítem:
bookPartResumen:
Cardiovascular diseases related to atherosclerosis are the first cause of death in the western world. This relevant fact has motivated the development of numerical models for arterial behavior in order to understand better cardiovascular pathologies. This chapter provides a parametric tool, using Machine Learning Techniques (MLTs), to assist the clinicians on decisions of the vulnerability of the atheroma plaque, especially when an instantaneous response is needed. The MLTs use an intelligent algorithm to model the atheroma plaque rupture in terms of four of the most influential geometrical factors in the plaque rupture: (i) fibrous cap thickness; (ii) stenosis ratio; (iii) lipid core width, and (iv) lipid core length. The output predicted is the maximum maximal principal stress occurred in an atherosclerotic coronary vessel with the input dimensions. For this purpose, an idealized and parametric coronary vessel model has been performed using finite element methods in order to train the machine learning.
Este ítem aparece en la(s) siguiente(s) colección(es)
Estadísticas de uso
Año |
2012 |
2013 |
2014 |
2015 |
2016 |
2017 |
2018 |
2019 |
2020 |
2021 |
2022 |
2023 |
Vistas |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
23 |
45 |
46 |
3 |
Descargas |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
Ítems relacionados
Mostrando ítems relacionados por Título, autor o materia.
-
El uso de las TIC en el ocio y la formación de los jóvenes vulnerables
Melendro Estefanía, Miguel; García Castilla, Francisco Javier; Goig Martínez, Rosa (Revista Española de Pedagogía, 01/2016)El objetivo de este artículo es aportar información específica sobre un ámbito escasamente abordado en investigación, el uso de las TIC en el tiempo de ocio por parte de los jóvenes más vulnerables y su tratamiento ... -
Predicting ore content throughout a machine learning procedure – An Sn-W enrichment case study
Iglesias Comesaña, Carla; Antunes, Margarida; Albuquerque, Teresa; Martínez Torres, Javier (1); Taboada, Javier (Journal of Geochemical Exploration, 01/2020)The distribution patterns of trace elements are very useful for predicting mineral deposits occurrence. Machine learning techniques were used for the computation of adequate models in trace elements' prediction. The main ... -
Obtaining the sGAG distribution profile in articular cartilage color images
Iglesias Comesaña, Carla; Luo, Lu; Martínez Torres, Javier (1); Taboada, Javier; Pérez, Ignacio (Biomedical Engineering / Biomedizinische Technik, 10/2019)The articular cartilage tissue is an essential component of joints as it reduces the friction between the two bones. Its load-bearing properties depend mostly on proteoglycan distribution, which can be analyzed through the ...