Use of Optimised LSTM Neural Networks Pre-Trained With Synthetic Data to Estimate PV Generation
Autor:
Martínez-Comesaña, Miguel
; Martínez-Torres, Javier
; Eguía-Oller, Pablo
; López-Gómez, Javier
Fecha:
11/2023Palabra clave:
Revista / editorial:
International Journal of Interactive Multimedia and Artificial IntelligenceCitación:
M.Martínez-Comesaña, J. Martínez-Torres, P. Eguía-Oller, J. López-Gómez. Use of Optimised LSTM Neural Networks Pre-Trained With Synthetic Data to Estimate PV Generation, International Journal of Interactive Multimedia and Artificial Intelligence, (2023), http://dx.doi.org/10.9781/ijimai.2023.11.002Tipo de Ítem:
articleDirección web:
https://www.ijimai.org/journal/bibcite/reference/3391Resumen:
Optimising the use of the photovoltaic (PV) energy is essential to reduce fossil fuel emissions by increasing the use of solar power generation. In recent years, research has focused on physical simulations or artifical intelligence models attempting to increase the accuracy of PV generation predictions. The use of simulated data as pre-training for deep learning models has increased in different fields. The reasons are the higher efficiency in the subsequent training with real data and the possibility of not having real data available. This work presents a methodology, based on an deep learning model optimised with specific techniques and pre-trained with synthetic data, to estimate the generation of a PV system. A case study of a photovoltaic installation with 296 PV panels located in northwest Spain is presented. The results show that the model with proper pre-training trains six to seven times faster than a model without pre-training and three to four times faster than a model pre-trained with non-accurate simulated data. In terms of accuracy and considering a homogeneous training process, all models obtained average relative errors around 12%, except the model with incorrect pre-training which performs worse.
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(es)
Estadísticas de uso
Año |
2012 |
2013 |
2014 |
2015 |
2016 |
2017 |
2018 |
2019 |
2020 |
2021 |
2022 |
2023 |
2024 |
Vistas |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
24 |
139 |
Descargas |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
15 |
69 |
Ítems relacionados
Mostrando ítems relacionados por Título, autor o materia.
-
Artificial intelligence to predict atheroma plaque vulnerability
Cilla, Myriam; Martínez Torres, Javier ; Peña, Estefanía; Martínez, Miguel Ángel (Artificial Intelligence in Precision Health: From Concept to Applications, 2020)Cardiovascular diseases related to atherosclerosis are the first cause of death in the western world. This relevant fact has motivated the development of numerical models for arterial behavior in order to understand better ... -
An Interplay between Oxidative Stress (Lactate Dehydrogenase) and Inflammation (Anisocytosis) Mediates COVID-19 Severity Defined by Routine Clinical Markers
Alonso-Bernáldez, Marta; Cuevas-Sierra, Amanda; Micó, Víctor; Higuera-Gómez, Andrea; Ramos-Lopez, Omar; Daimiel, Lidia; Dávalos, Alberto; Martínez-Urbistondo, María; Moreno-Torres, Víctor; Ramirez de Molina, Ana; Vargas, Juan Antonio; Martinez, J. Alfredo (Antioxidants, 2023)Viral infections activate the innate immune response and the secretion of inflammatory cytokines. They also alter oxidative stress markers, which potentially can have an involvement in the pathogenesis of the disease. The ... -
Cápsulas de arte: memoria frente al Alzheimer
Martínez-Vérez, María Victoria; Albar-Mansoa, Pedro Javier; López-Méndez, Lorena ; Torres-Vega, Sara (Interface-Comunicacao Saude Educacao, 2020)El presente trabajo analiza, a través de una técnica de panel, denominada “de cohorte”, las reflexiones de las investigadoras españolas en el campo del Arte y del Alzheimer, con el fin de estudiar su trayectoria profesional ...