• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • In Press
    • In Press
    • Ver ítem
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • In Press
    • In Press
    • Ver ítem

    Use of Optimised LSTM Neural Networks Pre-Trained With Synthetic Data to Estimate PV Generation

    Autor: 
    Martínez-Comesaña, Miguel
    ;
    Martínez-Torres, Javier
    ;
    Eguía-Oller, Pablo
    ;
    López-Gómez, Javier
    Fecha: 
    11/2023
    Palabra clave: 
    genetic algorithms; LSTM; optimisation; pre-training; PV power; synthetic datasets; IJIMAI
    Revista / editorial: 
    International Journal of Interactive Multimedia and Artificial Intelligence
    Citación: 
    M.Martínez-Comesaña, J. Martínez-Torres, P. Eguía-Oller, J. López-Gómez. Use of Optimised LSTM Neural Networks Pre-Trained With Synthetic Data to Estimate PV Generation, International Journal of Interactive Multimedia and Artificial Intelligence, (2023), http://dx.doi.org/10.9781/ijimai.2023.11.002
    Tipo de Ítem: 
    article
    URI: 
    https://reunir.unir.net/handle/123456789/15692
    DOI: 
    https://doi.org/10.9781/ijimai.2023.11.002
    Dirección web: 
    https://www.ijimai.org/journal/bibcite/reference/3391
    Open Access
    Resumen:
    Optimising the use of the photovoltaic (PV) energy is essential to reduce fossil fuel emissions by increasing the use of solar power generation. In recent years, research has focused on physical simulations or artifical intelligence models attempting to increase the accuracy of PV generation predictions. The use of simulated data as pre-training for deep learning models has increased in different fields. The reasons are the higher efficiency in the subsequent training with real data and the possibility of not having real data available. This work presents a methodology, based on an deep learning model optimised with specific techniques and pre-trained with synthetic data, to estimate the generation of a PV system. A case study of a photovoltaic installation with 296 PV panels located in northwest Spain is presented. The results show that the model with proper pre-training trains six to seven times faster than a model without pre-training and three to four times faster than a model pre-trained with non-accurate simulated data. In terms of accuracy and considering a homogeneous training process, all models obtained average relative errors around 12%, except the model with incorrect pre-training which performs worse.
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    icon
    Nombre: ip2023_11_002.pdf
    Tamaño: 3.167Mb
    Formato: application/pdf
    Ver/Abrir
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • In Press

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    24
    150
    133
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    15
    77
    92

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Artificial intelligence to predict atheroma plaque vulnerability 

      Cilla, Myriam; Martínez Torres, Javier ; Peña, Estefanía; Martínez, Miguel Ángel (Artificial Intelligence in Precision Health: From Concept to Applications, 2020)
      Cardiovascular diseases related to atherosclerosis are the first cause of death in the western world. This relevant fact has motivated the development of numerical models for arterial behavior in order to understand better ...
    • Higher Mortality Risk From Ovarian Carcinomas, Small Bowel Neoplasms, and B-Cell and Mucosa-Associated Lymphoid Tissue Lymphomas in Sjögren Syndrome Patients 

      Vázquez-Comendador, José Manuel; Mateos Seirul-lo, María; Martínez-Urbistondo, María; Miguel-Ontañón, Nuria; González-Guzmán, Antonio; Fernández-Guitián, Román; Castejón, Raquel; Durán-del Campo, Pedro; Tutor, Pablo; Mellor-Pita, Susana; Moreno-Torres, Víctor (Journal of Clinical Rheumatology, 2025)
      Objective To evaluate the impact of the different types of neoplasms and lineages on Sjögren syndrome (SjS) patient mortality. Methods Medical records review study based on the Spanish Hospital Discharge Database ...
    • How Sentiment Indicators Improve Algorithmic Trading Performance 

      Gómez-Martínez, Raúl; Medrano-García, María Luisa; López-López, David; Torres-Pruñonosa, José (Sage Open, 2025)
      This study explores the hypothesis that sentiment indicators can enhance the performance of algorithmic trading strategies. Specifically, we investigate the impact of incorporating investor sentiment metrics, such as the ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja