• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem

    An artificial neural network approach for predicting hypertension using NHANES data

    Autor: 
    López-Martínez, Fernando
    ;
    Núñez-Valdez, Edward Rolando
    ;
    González-Crespo, Rubén
    ;
    García-Díaz, Vicente
    Fecha: 
    01/12/2020
    Palabra clave: 
    Scopus; JCR
    Revista / editorial: 
    Scientific Reports
    Tipo de Ítem: 
    Articulo Revista Indexada
    URI: 
    https://reunir.unir.net/handle/123456789/10656
    DOI: 
    https://doi.org/10.1038/s41598-020-67640-z
    Dirección web: 
    https://www.nature.com/articles/s41598-020-67640-z
    Open Access
    Resumen:
    This paper focus on a neural network classification model to estimate the association among gender, race, BMI, age, smoking, kidney disease and diabetes in hypertensive patients. It also shows that artificial neural network techniques applied to large clinical data sets may provide a meaningful data-driven approach to categorize patients for population health management, and support in the control and detection of hypertensive patients, which is part of the critical factors for diseases of the heart. Data was obtained from the National Health and Nutrition Examination Survey from 2007 to 2016. This paper utilized an imbalanced data set of 24,434 with (69.71%) non-hypertensive patients, and (30.29%) hypertensive patients. The results indicate a sensitivity of 40%, a specificity of 87%, precision of 57.8% and a measured AUC of 0.77 (95% CI [75.01–79.01]). This paper showed results that are to some degree more effectively than a previous study performed by the authors using a statistical model with similar input features that presents a calculated AUC of 0.73. This classification model can be used as an inference agent to assist the professionals in diseases of the heart field, and can be implemented in applications to assist population health management programs in identifying patients with high risk of developing hypertension
    Mostrar el registro completo del ítem
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • Artículos Científicos WOS y SCOPUS

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    26
    36
    46
    42
    80
    77
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • A proposal for sentiment analysis on twitter for tourism-based applications 

      Guzmán De Núñez, Xiomarah Maria ; Núñez-Valdez, Edward Rolando; Pascual Espada, Jordán; González-Crespo, Rubén ; Garcia-Díaz, Vicente (Frontiers in Artificial Intelligence and Applications, 2018)
      People rely on other people’s opinions to make decisions, especially if they belong to their circle of trust. In addition, there are lots of websites of recognized prestige that provide people opinions about different ...
    • JGraphs: A Toolset to Work with Monte-Carlo Tree Search-Based Algorithms 

      García-Díaz, Vicente; Núñez-Valdez, Edward Rolando; González García, Cristian; Gómez Gómez, Alberto; González-Crespo, Rubén (International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 12/2020)
      Monte-Carlo methods are the basis for solving many computational problems using repeated random sampling in scenarios that may have a deterministic but very complex solution from a computational point of view. In recent ...
    • Replacing email protocols with blockchain-based smart contracts 

      Chamadoira González, José; García-Díaz, Vicente; Núñez-Valdez, Edward Rolando; Gómez Gómez, Alberto; González-Crespo, Rubén (Cluster Computing, 09/2020)
      Email services nowadays are flooded by spam and phishing attacks. Email service providers build their own email filters to protect the final users from such attacks resulting in an overall better experience. However, the ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja