• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem

    A proposal for sentiment analysis on twitter for tourism-based applications

    Autor: 
    Guzmán De Núñez, Xiomarah Maria (1)
    Núñez-Valdez, Edward Rolando
    Pascual Espada, Jordán
    González-Crespo, Rubén (1)
    Garcia-Díaz, Vicente
    Fecha: 
    2018
    Palabra clave: 
    bayesian network; domain-dpecific language; eTourism; machine learning; sentiment analysis; soft computing; Scopus(2)
    Tipo de Ítem: 
    conferenceObject
    URI: 
    https://reunir.unir.net/handle/123456789/10550
    DOI: 
    https://doi.org/10.3233/978-1-61499-900-3-713
    Dirección web: 
    http://ebooks.iospress.nl/publication/49979
    Resumen:
    People rely on other people’s opinions to make decisions, especially if they belong to their circle of trust. In addition, there are lots of websites of recognized prestige that provide people opinions about different products and services, which are read by millions of people before making a decision. That is why systems for sentiment analysis are becoming increasingly important to automatically process the information and determine feelings of users. They analyze their written words, usually conditioned by the characteristics of microblogging platforms, in which a large number of messages are published every day, providing a great source of information, impossible to be managed manually. In this work, we show a proposal to analyze the feeling that Twitter users have towards different hotels or hotel chains through a platform that could be easily adapted to other contexts. The goal is to create q a structure based on independent and interchangeable components that will make it possible to conduct studies in a more uniform, open and transparent way.
    Descripción: 
    Ponencia de la conferencia "17th International Conference on New Trends in Intelligent Software Methodology Tools and Techniques, SoMeT 2018; Granada; Spain; 26 September 2018 through 28 September 2018"
    Mostrar el registro completo del ítem
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • Artículos Científicos WOS y SCOPUS

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    47
    7
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Real‐time force doors detection system using distributed sensors and neural networks 

      Pascual Espada, Jordán; García-Díaz, Vicente; Nuñez-Valdéz, Edward Rolando; González-Crespo, Rubén (1) (International Journal of Intelligent Systems, 22/07/2019)
      Intelligent security systems have evolved enormously in the last few years. Most of these security systems use a group of physics sensors and algorithms for data analysis and communication systems to notify security alarms. ...
    • A model-driven approach to generate and deploy videogames on multiple platforms 

      Núñez-Valdez, Edward Rolando (1); García-Díaz, Vicente; Cueva Lovelle, Juan Manuel; Saez Achaerandio, Yago; González-Crespo, Rubén (1) (Journal of Ambient Intelligence and Humanized Computing, 06/2017)
      Currently, videogame development for mobile devices is a highly profitable and competitive industry worldwide. This profitability can be ascribed to the popularity that new technologies such as smartphones and tablets have ...
    • An artificial neural network approach for predicting hypertension using NHANES data 

      López-Martínez, Fernando; Núñez-Valdez, Edward Rolando; González-Crespo, Rubén (1); García-Díaz, Vicente (Scientific Reports, 01/12/2020)
      This paper focus on a neural network classification model to estimate the association among gender, race, BMI, age, smoking, kidney disease and diabetes in hypertensive patients. It also shows that artificial neural network ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioAutorización TFG-M

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja