• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem

    Lavrentiev Regularization methods for Ill-posed equations

    Autor: 
    Argyros, Ioannis K
    ;
    Magreñán, Á. Alberto
    Fecha: 
    2017
    Palabra clave: 
    computer science; mathematics & statistics; Scopus(2); WOS(2)
    Revista / editorial: 
    Iterative Methods and Their Dynamics with Applications: A Contemporary Study
    Tipo de Ítem: 
    bookPart
    URI: 
    https://reunir.unir.net/handle/123456789/10515
    DOI: 
    https://doi.org/10.1201/9781315153469
    Dirección web: 
    https://www.taylorfrancis.com/books/e/9781315153469
    Resumen:
    In this chapter, we consider the problem of approximately solving the nonlinear ill-posed operator equation of the form F(x) = y, (9.1) where F : D(F) ⊂ X → X is a monotone operator and X is a real Hilbert space. We denote the inner product and the corresponding norm on a Hilbert space by ⟨., .⟩ and ||.||, respectively. Let U(x, r) stand for the open ball in X with center x ∈ X and radius r > 0. Recall that F is said to be a monotone operator if it satisfies the relation ⟨F(x1)− F(x2), x1 − x2⟩ ≥ 0 (9.2) for all x1, x2 ∈ D(F).
    Descripción: 
    Capítulo del libro "Iterative Methods and Their Dynamics with Applications: A Contemporary Study"
    Mostrar el registro completo del ítem
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • Artículos Científicos WOS y SCOPUS

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    50
    21
    30
    32
    61
    73
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Local and Semi-local convergence for Chebyshev two point like methods with applications in different fields 

      Argyros, Christopher I.; Argyros, Michael I; Argyros, Ioannis K; Magreñán, Á. Alberto; Sarría, Íñigo (Journal of Computational and Applied Mathematics, 2023)
      The convergence is developed for a large class of Chebyshev-two point-like methods for solving Banach space valued equations. Both the local as well as the semi-local convergence is provided for these methods under general ...
    • Local convergence comparison between frozen Kurchatov and Schmidt–Schwetlick–Kurchatov solvers with applications 

      Moysi, Alejandro; Argyros, Michael I; Argyros, Ioannis K; Magreñán, Á. Alberto ; Sarría, Íñigo ; González Sánchez, Daniel (Journal of Computational and Applied Mathematics, 04/2022)
      In this work we are going to use the Kurchatov–Schmidt–Schwetlick-like solver (KSSLS) and the Kurchatov-like solver (KLS) to locate a zero, denoted by x∗ of operator F. We define F as F:D⊆B1⟶B2 where B1 and B2 stand for ...
    • Ball comparison between frozen Potra and Schmidt-Schwetlick schemes with dynamical analysis 

      Argyros, Michael I; Argyros, Ioannis K; González, Daniel; Magreñán, Á. Alberto; Moysi, Alejandro; Sarría, Íñigo (Computational and Mathematical Methods, 2021)
      In this article, we propose a new research related to the convergence of the frozen Potra and Schmidt-Schwetlick schemes when we apply to equations. The purpose of this study is to introduce a comparison between two solutions ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja