Mostrar el registro sencillo del ítem
Lavrentiev Regularization methods for Ill-posed equations
dc.contributor.author | Argyros, Ioannis K | |
dc.contributor.author | Magreñán, Á. Alberto | |
dc.date | 2017 | |
dc.date.accessioned | 2020-09-07T10:23:57Z | |
dc.date.available | 2020-09-07T10:23:57Z | |
dc.identifier.isbn | 9781315153469 | |
dc.identifier.uri | https://reunir.unir.net/handle/123456789/10515 | |
dc.description | Capítulo del libro "Iterative Methods and Their Dynamics with Applications: A Contemporary Study" | es_ES |
dc.description.abstract | In this chapter, we consider the problem of approximately solving the nonlinear ill-posed operator equation of the form F(x) = y, (9.1) where F : D(F) ⊂ X → X is a monotone operator and X is a real Hilbert space. We denote the inner product and the corresponding norm on a Hilbert space by ⟨., .⟩ and ||.||, respectively. Let U(x, r) stand for the open ball in X with center x ∈ X and radius r > 0. Recall that F is said to be a monotone operator if it satisfies the relation ⟨F(x1)− F(x2), x1 − x2⟩ ≥ 0 (9.2) for all x1, x2 ∈ D(F). | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | Iterative Methods and Their Dynamics with Applications: A Contemporary Study | es_ES |
dc.relation.uri | https://www.taylorfrancis.com/books/e/9781315153469 | es_ES |
dc.rights | restrictedAccess | es_ES |
dc.subject | computer science | es_ES |
dc.subject | mathematics & statistics | es_ES |
dc.subject | Scopus(2) | es_ES |
dc.subject | WOS(2) | es_ES |
dc.title | Lavrentiev Regularization methods for Ill-posed equations | es_ES |
dc.type | bookPart | es_ES |
reunir.tag | ~ARI | es_ES |
dc.identifier.doi | https://doi.org/10.1201/9781315153469 |
Ficheros en el ítem
Ficheros | Tamaño | Formato | Ver |
---|---|---|---|
No hay ficheros asociados a este ítem. |