• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem

    Generalized equations and newton’s and method

    Autor: 
    Argyros, Ioannis K
    ;
    Magreñán, Á. Alberto
    Fecha: 
    2017
    Palabra clave: 
    computer science; mathematics & statistics; Scopus(2); WOS(2)
    Revista / editorial: 
    Iterative Methods and Their Dynamics with Applications: A Contemporary Study
    Tipo de Ítem: 
    bookPart
    URI: 
    https://reunir.unir.net/handle/123456789/10493
    DOI: 
    https://doi.org/10.1201/9781315153469
    Dirección web: 
    https://www.taylorfrancis.com/books/e/9781315153469
    Resumen:
    In [18], G. S. Silva considered the problem of approximating the solution of the generalized equation F(x)+Q(x) ϶ 0,(11.1) where F : D → H is a Fréchet differentiable function, H is a Hilbert space with inner product ⟨., .⟩ and corresponding norm ||.||, D ⊆ H an open set and T : H ⇉ H is set-valued and maximal monotone. It is well known that the system of nonlinear equations and abstract inequality system can be modelled as equation of the form (11.1) [17]. If ψ : H → (−∞,+ ∞) is a proper lower semicontinuous convex function and Q(x) = ∂ψ(x) = {u ∈ H : ψ(y) ≥ ψ(x)+ ⟨u, y − x⟩}, for all y ∈ H (11.2) then (11.1) becomes the variational inequality problem F(x)+∂ψ(x) ϶ 0, including linear and nonlinear complementary problems. Newton’s method for solving (11.1) for an initial guess x0 is defined by F(xk)+F′(xk)(xk+1−xk)+Q(xk+1) ϶, k = 0,1,2… (11.3) has been studied by several authors [1]-[24].
    Descripción: 
    Capítulo del libro "Iterative Methods and Their Dynamics with Applications"
    Mostrar el registro completo del ítem
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • Artículos Científicos WOS y SCOPUS

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    24
    22
    30
    33
    72
    316
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Local and Semi-local convergence for Chebyshev two point like methods with applications in different fields 

      Argyros, Christopher I.; Argyros, Michael I; Argyros, Ioannis K; Magreñán, Á. Alberto; Sarría, Íñigo (Journal of Computational and Applied Mathematics, 2023)
      The convergence is developed for a large class of Chebyshev-two point-like methods for solving Banach space valued equations. Both the local as well as the semi-local convergence is provided for these methods under general ...
    • Local convergence comparison between frozen Kurchatov and Schmidt–Schwetlick–Kurchatov solvers with applications 

      Moysi, Alejandro; Argyros, Michael I; Argyros, Ioannis K; Magreñán, Á. Alberto ; Sarría, Íñigo ; González Sánchez, Daniel (Journal of Computational and Applied Mathematics, 04/2022)
      In this work we are going to use the Kurchatov–Schmidt–Schwetlick-like solver (KSSLS) and the Kurchatov-like solver (KLS) to locate a zero, denoted by x∗ of operator F. We define F as F:D⊆B1⟶B2 where B1 and B2 stand for ...
    • Ball comparison between frozen Potra and Schmidt-Schwetlick schemes with dynamical analysis 

      Argyros, Michael I; Argyros, Ioannis K; González, Daniel; Magreñán, Á. Alberto; Moysi, Alejandro; Sarría, Íñigo (Computational and Mathematical Methods, 2021)
      In this article, we propose a new research related to the convergence of the frozen Potra and Schmidt-Schwetlick schemes when we apply to equations. The purpose of this study is to introduce a comparison between two solutions ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja