Mostrar el registro sencillo del ítem

dc.contributor.authorArgyros, Ioannis K
dc.contributor.authorMagreñán, Á. Alberto
dc.date2017
dc.date.accessioned2020-09-02T13:54:00Z
dc.date.available2020-09-02T13:54:00Z
dc.identifier.isbn9781315153469
dc.identifier.urihttps://reunir.unir.net/handle/123456789/10493
dc.descriptionCapítulo del libro "Iterative Methods and Their Dynamics with Applications"es_ES
dc.description.abstractIn [18], G. S. Silva considered the problem of approximating the solution of the generalized equation F(x)+Q(x) ϶ 0,(11.1) where F : D → H is a Fréchet differentiable function, H is a Hilbert space with inner product ⟨., .⟩ and corresponding norm ||.||, D ⊆ H an open set and T : H ⇉ H is set-valued and maximal monotone. It is well known that the system of nonlinear equations and abstract inequality system can be modelled as equation of the form (11.1) [17]. If ψ : H → (−∞,+ ∞) is a proper lower semicontinuous convex function and Q(x) = ∂ψ(x) = {u ∈ H : ψ(y) ≥ ψ(x)+ ⟨u, y − x⟩}, for all y ∈ H (11.2) then (11.1) becomes the variational inequality problem F(x)+∂ψ(x) ϶ 0, including linear and nonlinear complementary problems. Newton’s method for solving (11.1) for an initial guess x0 is defined by F(xk)+F′(xk)(xk+1−xk)+Q(xk+1) ϶, k = 0,1,2… (11.3) has been studied by several authors [1]-[24].es_ES
dc.language.isoenges_ES
dc.publisherIterative Methods and Their Dynamics with Applications: A Contemporary Studyes_ES
dc.relation.urihttps://www.taylorfrancis.com/books/e/9781315153469es_ES
dc.rightsrestrictedAccesses_ES
dc.subjectcomputer sciencees_ES
dc.subjectmathematics & statisticses_ES
dc.subjectScopus(2)es_ES
dc.subjectWOS(2)es_ES
dc.titleGeneralized equations and newton’s and methodes_ES
dc.typebookPartes_ES
reunir.tag~ARIes_ES
dc.identifier.doihttps://doi.org/10.1201/9781315153469


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem