• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem

    Measures of the Basins of Attracting n-Cycles for the Relaxed Newton's Method

    Autor: 
    Gutierrez, J. M.
    ;
    Hernandez, L. J.
    ;
    Magreñán, Á. Alberto
    ;
    Rivas, M. T.
    Fecha: 
    2016
    Palabra clave: 
    simple root; parameter plane; riemann sphere; double root; spherical triangle; WOS(2); Scopus(2)
    Revista / editorial: 
    Advances in iterative methods for nonlinear equations
    Tipo de Ítem: 
    bookPart
    URI: 
    https://reunir.unir.net/handle/123456789/10036
    DOI: 
    https://doi.org/10.1007/978-3-319-39228-8_9
    Dirección web: 
    https://link.springer.com/chapter/10.1007%2F978-3-319-39228-8_9
    Resumen:
    The relaxed Newton's method modifies the classical Newton's method with a parameter h in such a way that when it is applied to a polynomial with multiple roots and we take as parameter one of these multiplicities, it is increased the order of convergence to the related multiple root. For polynomials of degree three or higher, the relaxed Newton's method may possess extraneous attracting (even super-attracting) cycles. The existence of such cycles is an obstacle for using the relaxed Newton's method to find the roots of the polynomial. Actually, the basins of these attracting cycles are open subsets of C. The authors have developed some algorithms and implementations that allow to compute the measure (area or probability) of the basin of a p-cycle when it is taken in the Riemann sphere. In this work, given a non negative integer n, we use our implementations to study the basins of non-repelling p-cycles, for 1 <= p <= n, when we perturb the relaxing parameter h. As a consequence, we quantify the efficiency of the relaxed Newton's method by computing, up to a given precision, the measure of the different attracting basins of non-repelling cycles. In this way, we can compare the measure of the basins of the ordinary fixed points (corresponding to the polynomial roots) with the measure of the basins of the point at infinity and the basins of other non-repelling p-cyclic points for p > 1.
    Mostrar el registro completo del ítem
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • Artículos Científicos WOS y SCOPUS

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    46
    26
    51
    41
    81
    36
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Extending the domain of starting points for Newton's method under conditions on the second derivative 

      Argyros, Ioannis K; Ezquerro, J A; Hernández-Verón, M A; Magreñán, Á. Alberto (Journal of Computational and Applied Mathematics, 10/2018)
      In this paper, we propose a center Lipschitz condition for the second Frechet derivative together with the use of restricted domains in order to improve the domain of starting points for Newton's method. In addition, we ...
    • Starting points for Newton’s method under a center Lipschitz condition for the second derivative 

      Ezquerro, J A; Hernández-Verón, M A; Magreñán, Á. Alberto (Journal of Computational and Applied Mathematics, 03/2018)
      We analyze the semilocal convergence of Newton's method under a center Lipschitz condition for the second derivative of the operator involved different from that used by other authors until now. In particular, we propose ...
    • The Kumon Method: Its Importance in the Improvement on the Teaching and Learning of Mathematics from the First Levels of Early Childhood and Primary Education 

      Orcos, Lara ; Hernández-Carrera, Rafael M. ; Espigares Pinazo, Manuel Jesús ; Magreñán, Á. Alberto (Mathematics, 01/2019)
      The present work gathers an educational experience based on the application of the personalized Kumon Mathematics Method, carried out in the school year 2015-2016, in which 30,849 students and 230 teachers from several ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja