• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2015
    • vol. 3, nº 2, march 2015
    • Ver ítem
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2015
    • vol. 3, nº 2, march 2015
    • Ver ítem

    Procedural Content Generation for Real-Time Strategy Games

    Autor: 
    Lara-Cabrera, Raúl
    ;
    Nogueira-Collazo, Mariela
    ;
    Cotta, Carlos
    ;
    Fernández-Leiva, Antonio J.
    Fecha: 
    03/2015
    Palabra clave: 
    artificial intelligence; content generation; e-learning; gamification; IJIMAI
    Revista / editorial: 
    International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI)
    i
    Tipo de Ítem: 
    article
    URI: 
    https://reunir.unir.net/handle/123456789/9988
    DOI: 
    http://dx.doi.org/10.9781/ijimai.2015.325
    Dirección web: 
    https://www.ijimai.org/journal/node/735
    Open Access
    Resumen:
    Videogames are one of the most important and profitable sectors in the industry of entertainment. Nowadays, the creation of a videogame is often a large-scale endeavor and bears many similarities with, e.g., movie production. On the central tasks in the development of a videogame is content generation, namely the definition of maps, terrains, non-player characters (NPCs) and other graphical, musical and AI-related components of the game. Such generation is costly due to its complexity, the great amount of work required and the need of specialized manpower. Hence the relevance of optimizing the process and alleviating costs. In this sense, procedural content generation (PCG) comes in handy as a means of reducing costs by using algorithmic techniques to automatically generate some game contents. PCG also provides advantages in terms of player experience since the contents generated are typically not fixed but can vary in different playing sessions, and can even adapt to the player herself. For this purpose, the underlying algorithmic technique used for PCG must be also flexible and adaptable. This is the case of computational intelligence in general and evolutionary algorithms in particular. In this work we shall provide an overview of the use of evolutionary intelligence for PCG, with special emphasis on its use within the context of real-time strategy games. We shall show how these techniques can address both playability and aesthetics, as well as improving the game AI.
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    icon
    Nombre: ijimai20143_2_5_pdf_73775.pdf
    Tamaño: 660.8Kb
    Formato: application/pdf
    Ver/Abrir
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • vol. 3, nº 2, march 2015

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    69
    46
    47
    46
    71
    84
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    62
    31
    87
    154
    107
    50

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • I Congreso Español de Videojuegos 2022 

      González Calero, Pedro Antonio; Gómez Martín, Marco Antonio; Gómez Martín, Pedro Pablo; Gutiérrez Manjón, Sergio; Gutiérrez Sánchez, Pablo; Peinado, Federico; Sánchez-Ruiz Granados, Antonio; Barbancho, Isabel; Blanco Bueno, Carlos; Botella Nicolás, Ana María; Chover, Miguel; Díaz Álvarez, Josefa; Echeverría, Jorge; Fernández Leiva, Antonio J.; Fernández Ruiz, Marta; Gallego-Durán, Francisco; García Sánchez, Pablo; Gutiérrez Vela, Francisco L; Lara-Cabrera, Raúl; León, Carlos; Moreno, Jorge L.; Lozano Muñoz, Alejandro; Mayor, Jesús; Medina Medina, Nuria; Mejías-Climent, Laura; Mora, Antonio M; Munarriz, Jaime; Patow, Gustavo A.; Sagredo-Olivenza, Ismael; Salinas, María-José; Sanchez I. Peris, Francesc Josep; Sánchez-Ruiz, Antonio A; Shliakhovchuk, Elena; Tejada, Jesus (CEUR Workshop Proceedings, 2022)
      {Resumen no disponible]
    • DeepFair: Deep Learning for Improving Fairness in Recommender Systems 

      Bobadilla, Jesús; Lara-Cabrera, Raúl; González-Prieto, Ángel; Ortega, Fernando (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 06/2021)
      The lack of bias management in Recommender Systems leads to minority groups receiving unfair recommendations. Moreover, the trade-off between equity and precision makes it difficult to obtain recommendations that meet both ...
    • The application of blockchain algorithms to the management of education certificates 

      Maestre, Raúl Jaime; Bermejo-Higuera, Javier; Gámez, Nádia; Bermejo Higuera, Juan Ramón; Sicilia, Juan Antonio; Orcos, Lara (Evolutionary Intelligence, 2023)
      Blockchain is a new application technology in many sectors and the same is true in the world of education. Therefore, there is an increasingly emerging need to research blockchain technology, as it is still taking its first ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja