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Abstract — Videogames are one of the most important and 

profitable sectors in the industry of entertainment. Nowadays, the 

creation of a videogame is often a large-scale endeavor and bears 

many similarities with, e.g., movie production. On the central 

tasks in the development of a videogame is content generation, 

namely the definition of maps, terrains, non-player characters 

(NPCs) and other graphical, musical and AI-related components 

of the game. Such generation is costly due to its complexity, the 

great amount of work required and the need of specialized 

manpower. Hence the relevance of optimizing the process and 

alleviating costs. In this sense, procedural content generation 

(PCG) comes in handy as a means of reducing costs by using 

algorithmic techniques to automatically generate some game 

contents. PCG also provides advantages in terms of player 

experience since the contents generated are typically not fixed but 

can vary in different playing sessions, and can even adapt to the 

player herself. For this purpose, the underlying algorithmic 

technique used for PCG must be also flexible and adaptable. This 

is the case of computational intelligence in general and 

evolutionary algorithms in particular. In this work we shall 

provide an overview of the use of evolutionary intelligence for 

PCG, with special emphasis on its use within the context of real-

time strategy games. We shall show how these techniques can 

address both playability and aesthetics, as well as improving the 

game AI. 

 
Keywords — Procedural Content Generation, Artificial 

Intelligence, game strategy, self-learning. 

 

I. INTRODUCTION 

PURRED on by the emergence of the videogame industry 

as the main component of the entertainment industry has 

motivated, research on videogames has acquired increasing 

notoriety during the last years. Such research spans many areas 

such as marketing and gamification, psychology and player 

satisfaction, computational intelligence, education and health 

(serious games) and computer graphics, just to cite a few. This 

diversification of research areas is largely motivated by a shift 

in the priorities of the video game industry: while games used 

to rely heavily on their graphical quality, other features such as 

the music, the player immersion into the game and interesting 

storyline have gained enormous importance. To cope with the 

plethora of new interesting challenges in the area of 

 
 

videogames, artificial and computational intelligence are 

turning out to be instrumental tools [25]. 

We recently carried out a mathematical, network-based 

study of the research community in the field of computational 

intelligence in video games [22] and obtained conclusive 

evidence of the vibrant activity of the field, which is steadily 

gaining momentum (as reflected in the growth patterns of new 

researchers and new publications). Still, the community of 

computational intelligence in video games is not yet fully 

developed, and collaboration links are still forming and 

improving the cohesion of the community. Besides, the 

industry is beginning to adopt the techniques and 

recommendations that academia offers. 

Procedural Content Generation (PCG) refers to the 

algorithmic creation of content for video games, such as maps, 

levels, terrains, graphic textures, music, rules, quests, 

narrative, and missions among others possible [33]; 

traditionally, the creation of NPC (non-player controlled) 

behavior is not considered as PCG although, in a more global 

perspective, it is specific content for the game. The advantages 

of automatically creating video game content are manifold: 

firstly, it provides a drastic reduction in the cost and time of 

development as well as the memory used to store game 

artifacts; secondly, PCG provides a mechanism to inspire 

human artists to improve their creativity. Therefore, PCG can 

be considered from many different points of views and raises a 

high number of challenges from both Academic and Industry 

[35]. Moreover, the influence of PCG in, at least, other six 

areas in game programming, namely, NPC behavior learning, 

search and planning, games as Artificial Intelligence (AI) 

benchmarks, AI-assisted game design, general game AI, and 

AI in commercial games, underlines its importance [39, 40]. 

From the set of genres of videogames, Real-Time Strategy 

(RTS) games are one of the most exciting sub-genres since 

they require managing different kind of units and resources in 

real-time. In addition, they usually involve the participation of 

multiple players (not all of them necessarily human) that have 

to deal with incomplete information during the game; it is 

precisely this combination of resource management, 

multiplayer context and partial knowledge of the world what 

makes them an ideal framework to conduct Artificial 

Intelligence experiments; indeed, many challenging problems, 

such as resource allocation, adversarial real time planning, 
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spatial and temporal reasoning, opponent modeling, and 

opponent strategy prediction, just to name a few, can be 

addressed. As a result, RTS games offer a wide variety of 

fundamental AI research challenges [20]. 

In this context, one of the most interesting challenges in the 

videogame development process is precisely the procedural 

generation of content for RTS games as the artifact creation 

can be handled from many different perspectives due to the 

heterogeneity of the content that can be produced in RTS 

games, and to the participation of multiple (sometimes 

hundreds of) players with diverse profiles and skills. This work 

deals with the application of PCG techniques in RTS games, 

firstly by providing a brief review on this issue and, 

consequently, covering specific case studies in which 

evolutionary search has been employed to produce game 

components that satisfy certain properties.  

II. PROCEDURAL CONTENT GENERATION 

Videogames provide a wide range of fundamental problems 

that are useful for doing research in artificial intelligence. 

Among these we can cite real-time task planning and decision-

making under uncertainty. This is particularly true in the case 

of Real-Time Strategy (RTS) games, which represent a whole 

genre of videogames in which the players must manage a 

collection of units and assets without a definite turn structure, 

that is, actions are asynchronously taken. Not surprisingly, 

RTS games have been used as researching tools to study and 

develop new artificial intelligence techniques, as explained in 

our paper about RTS games and computational intelligence 

[20]. 

The type of content that PCG techniques are able to create is 

very diverse, being maps and levels the prevailing type, as 

demonstrated by the large number of papers in the state of the 

art which are related to automatic level generation [14]. For 

example, Frade et al. introduced the use of genetic 

programming for evolving maps for video games, using in this 

process both human subjective evaluation and quality 

measures such as maps’ accessibility [10] and edge length 

[11]. Another example of procedural level generation by Lanzi 

et al. [18] consists of evolving game maps that are specifically 

designed to improve the balance of the game, so no player has 

a marked superiority over the opponent (we will return to this 

issue later on). 

Regarding other kind of content, Hastings et al. [12, 13], 

proposed a PCG algorithm for the game “Galactic Arms Race” 

in which the weapons available were generated on the fly. In 

this case, the fitness of the generated weapons was computed 

based on the amount of time the players used them, hence 

measuring the player satisfaction without requiring explicit 

feedback from the players. Onuczko et al. [31] presented a tool 

prototype for automatically producing specifications for 

missions and quests for a role-playing game. Font et al. [9] 

showed initial research towards a system capable of creating 

the rules for different card games. Collins [5] explored several 

approaches to procedural music composition. 

Focusing on PCG for RTS games, Togelius et al. [36, 37] 

presented a multi-objective evolutionary algorithm whose 

objective was to create maps for this kind of games. 

Mahlmann et al. [26] described a search-based map generator 

for the game Dune 2, which was able to build playable maps 

using cellular automata (converting low-resolution matrices 

into maps fulfilling gameplay requirements). Finally, Ruela 

and Guimaraes [34] used a coevolutionary evolutionary 

algorithm aiming to maximize the performance of battle 

formations for the strategy game Call of Roma. We will also 

tackle coevolution later in this work. 

III. CASE STUDIES 

Historically, the success of a video game was directly 

associated with its graphical quality, but in the last decade this 

has changed and having good graphics does not necessarily 

ensure high sales. Players demand video games that show 

more than just a nice graphical quality and other issues, such 

as music, the story, or the atmosphere of the game, influence 

the decision of a player to get a specific game. The question of 

what it is that attracts the attention of players in a game is easy 

to answer: fun. How to obtain fun games and whether we can 

predict if the game will be of interest to players are not so 

easily answered, though. 

There are several theories in the literature on what makes 

video games fun and why we play games [17], and, according 

to [4], a game’s achievement might be deduced by measuring 

in advance the quality of the game (which seems however to 

be a difficult task). The notion of fun is difficult to measure as 

this depends on each player but it is naturally associated with 

the notion of player satisfaction: the greater the satisfaction, 

the greater the fun. 

A.  Playability-oriented PCG 

This subsection focuses on the ability of PCG to engage the 

player (as commercial games demand) by keeping, during a 

match, an adequate trade off between the dynamism of the 

game and the balance between players which, probably, have 

different skills. More precisely, we aimed to generate maps for 

the RTS game Planet Wars, focusing on the properties that a 

priori make it entertaining and appealing to play, ensuring that 

the games are balanced (i.e., the forces of one of the players 

are not overwhelmingly larger than those of the other player – 

see [19]) and dynamic (i.e., action packed, there are battles 

and changes in the balance of power of the players – see [21]) 

For this purpose we are going to use evolutionary algorithms 

(EAs). An EA is a nature-inspired optimization and search 

method that deals with a set of entities (termed population), 

which represents a set of possible solutions. These entities, 

which are called individuals or chromosomes, compete against 

each other so the fittest individuals prevail over time, evolving 

towards better solutions. This is an iterative process where 

each step involves crossing (mixing information from several 

solutions) and mutating (performing random changes) 

individuals using genetic operators. Because individuals that 

represent the most appropriate solutions (as dictated by a so-
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called fitness function that measure the goodness of solutions) 

are more likely to survive, the population gradually improves.  

In order to use an EA, it is necessary to define several 

parameters: the individual’s representation, the genetic 

operators, the size of the population and the number of 

generations the algorithm will be running.  

Firstly, we had to consider how the solutions were to be 

represented and evaluated. A map for Planet Wars (see [24] 

for a description of the game) is defined as a collection of np 

planets distributed over a bi-dimensional plane. Each planet is 

characterized by its coordinates (xi, yi), its size si (determining 

the rate at which this planet produces new ships once captured 

by one of the players) and an initial number of ships wi 

(determining the forces required to conquer the planet for the 

first time). As a result, a map can be described as a list [1, 2, 

…, n], where each i is a tuple xi, yi, si, wi.  

 Two of the planets (the first two for simplicity) are initially 

marked as home planets of the players. From the point of view 

of the EA, the he number of planets np need not be fixed, and 

can range between an upper and a lower limit (15 and 30 in 

our experiments, see, e.g., Figure 1). In fact, one of the 

features of the evolutionary approach discussed later on is the 

ability to self-adapt to not only search parameters but also to 

the complexity (i.e., number of planets) of the map. 

Regarding the evaluation of a map’s playability features, 

we defined a tournament system which runs several games 

between an arbitrary number of pre-defined bots. Then, the 

tournament system analyzed some statistics gathered from 

each game in order to compute and quantify how balanced and 

dynamic the game was. Precisely, the system collects the 

following information from the i-th game (out of the total 

number of Ng games played in the tournament): 

 Territorial imbalance: this is defined as the average 

imbalance in conquered planets throughout the game (the 

difference between the percentage of planets conquered 

by each player at each turn, averaged for all turns).  

 Growth imbalance: this is measured analogously to the 

territorial imbalance, but considering the combined ship 

production capacity rather than the number of planets 

conquered (a player may have conquered many planets 

but these may be small, whereas other player may only 

dominated a few large planets).  

 Ship imbalance: the same ideas sketched above are in this 

case applied to the number of ships (notice that a player 

can accumulate a large number of ships by following a 

passive strategy and not getting involved in fights and 

vice versa).  

 Game length: this is just the percentage of the maximum 

number of turns played in the current game. Short games 

are imbalanced because it is implied that one of the 

player quickly destroys the fleet of its opponent.  

 Conquering rate: this is the percentage of plantes 

conquered at the end of the game. If it is high, it means 

that the players have actively engaged in expanding their 

territories rather than sitting in their home planets.  

 Reconquering rate: related to the previous measure, this 

is the average percentage of plantes whose ownership 

changes during the game (a high rate indicates that the 

players are actively fighting each other).  

 Peak difference: this is actually a collection of variables, 

each of them measuring the maximal amplitude of the 

variation in any of the resources accounted for, in this 

case planets, combined size and ships.  

These variables are subsequently averaged across the Ng 

games comprised in the tournament. In order to evaluate the 

actual balance and dynamism of a map we define a fuzzy rule 

base that captures some expert characterization of these 

features. For example, in order to account for balance we can 

use:  

1) if territorial imbalance is LOW and growth imbalance is 

LOW then balance is HIGH  

2) if territorial imbalance is HIGH and growth imbalance is 

low and ship imbalance is LOW then balance is MEDIUM  

3) if (territorial imbalance is LOW and growth imbalance is 

HIGH) or game length is LOW then balance is LOW  

Intuitively, we consider that a map has high balance if the 

average imbalance in planets and growth is low during the 

game. If one of the players has material advantage in terms of 

planets and ships, even if the combined growth is similar, the 

we deem the map to have medium balance. Finally, if both 

players manage to conquer a similar number of planets but 

their sizes are disparate or the game length is short, the map 

has low balance. Of course, there is some room for refining 

this characterization of balance by considering other 

combinations of the variables, but the above serves as an 

illustrative example. Similarly, we can define fuzzy rules for 

dynamism. For example, we can state that   

 
 

Fig. 1.  A game of Planet Wars in progress. The arrows represent moving 

fleets while the number over the planets shows the number of stationed ships. 
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1) if conquering rate is HIGH and reconquering rate is HIGH 

then dyn is HIGH  

2)  if all peak differences is HIGH then dyn is HIGH  

i.e., if there are many planets being conquered and 

reconquered, or the peak differences in all three resources is 

high, then dynamism is high (there are battles and action).  

Likewise if it turns out that one of the peak differences is 

high but any of the other two is not, the dynamism can be said 

to be intermediate (this would be captured in a family of three 

rules). Finally, if all peak differences are low or the 

conquering and reconquering rates are not high and the game 

length is very short, the dynamism of the map is considered to 

be low. 

The procedural map generator used a self-adaptive 

evolutionary approach with the solutions encoded as mixed 

real-integer vectors. The parameters governing mutation were 

also a part of the solutions, thus providing the means for self-

adapting them (see [24] for a full explanation of the 

evolutionary algorithm and its parameters and operators). The 

players of the tournament system used to assess the quality of 

the maps during the evaluation phase were three bots 

submitted to the Google AI Challenge 2010, namely Manwe, 

Flagscapper’s bot and fglider’s bot. All of them ranked in the 

top 100 (there were over 4600 participants) and their source 

code was available – see [24] for the URLs.  

Experiments focusing separately in either of the two 

properties point at the higher difficulty of attaining dynamism 

with respect to balance. Figure 2 shows an example of the 

maps obtained
6
. Of course it is possible to optimize both 

properties at the same time following a multi-objective 

approach (the Non-dominated Sorting Genetic Algorithm II –

NSGA-II– in our case). By doing so, we can obtain a collection 

of solutions representing different tradeoffs between balance 

and dynamism (ranging from highly balanced and lowly 

 
6  It is possible to watch a game on these maps at 

http://www.lcc.uma.es/∼raul/maps/maps.html 

dynamic to highly dynamic and poorly balanced, with different 

intermediate scenarios in which an increase in one the 

properties is traded by a decrease in the other). Note in this 

sense that a single-objective approach cans easily exploit the 

first objective (i.e. balance), providing maps that achieve 

perfect balance due to the complete inaction of the players. 

However, the situation is different from the point of view of 

dynamism, since according to our definition a very unbalanced 

game is likely going to be short or feature less alternation 

between the players, hence resulting to be non-dynamic as 

well. For this reason, the multiobjective approach yields a 

graceful degradation of dynamism when balance is increased, 

eventually exhibiting an abrupt reduction of the dynamism 

upon reaching the high end of balance. Further studies show 

that, in general, dynamic games seem to be related to maps 

featuring a larger number of planets, widely scattered on the 

map and whose sizes are positively correlated to the initial 

number of ships. 

B. Introducing Aesthetics 

In Section ¡Error! No se encuentra el origen de la 

referencia.III-A we focused on making the game more fun to 

play, obtaining games that are balanced and dynamic. 

However, the generated maps lacked aesthetics (for example, 

maps with all their planets clustered in a small region, see 

Figure 2), which is an interesting feature apart from the fun 

that may lead to increase the player satisfaction. It turns out 

that fun and aesthetics are two complementary ways of 

achieving the same goal [27]. Moreover, non- aesthetic maps 

may confuse the player, reducing his/her satisfaction or even 

leading him/her to stop playing the game. 

Following a similar evolutionary scheme and 

representation of the solutions for the automatic generation of 

balanced and dynamic maps, we considered different 

properties in order to evaluate the aesthetics of maps. We 

establish a separation between geometrical features (based on 

the spatial properties of the map, namely coordinates and 

distances), and topological features (based on qualitative 

           
(a) (b) 

 

Fig. 2.  Two examples of maps that have been generated by the algorithm. Planet’s colors denote whether it is conquered by some player (red/blue) or remains 

neutral. The number shows how many ships are defending each planet. 
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relationships among planets invariant under geometrical 

transformations such as rotation, translation or scaling). We 

also take into account morphological features based on 

individual planet properties, such as size or initial number of 

ships. 

These are the geometrical measures: 

 Spatial distribution of planets: given planet coordinates we 

compute the average distance between planets d and the 

standard deviation of these distances d. 

 Planet features: given the sizes and initial number of  ships 

of each planet, we compute the average and standard 

deviation of sizes (s and s respectively) and Pearson’s 

correlation ϱ between sizes and number of ships.  

Thus, we can characterize a map by a 5-tuple d, d, s, s, 

ϱ, and use some distance measure (e.g., Euclidean distance) to 

determine the geometrical distance among two maps.  

As to the topological features, these are extracted from the 

sphere-of-influence graph (SIG) of each map, which sets a 

relationship between some set of points based on their spatial 

arrangement [38] (defining a planet’s radius of influence as the 

shortest distance of any other planet, and defining a graph in 

which vertex is a planet and edges are defined between planets 

whose distance is less or equal to the sum of their respective 

radii of influence). Using this SIG we can compute:  

 Number of connected components: number of maximal 

sub-graphs in which any two vertices are connected by at 

least one path.  

 Average node’s degree: average number of edges incident 

to each node.  

 Density of the graph: ratio between the number of edges of 

the graph and that of a complete graph with the same 

number of vertices.  

 Average clustering coefficient: average percentage of each 

node’s neighbors which are neighbors of each other too.  

 Pearson correlation between the size of the nodes and 

their betweenness centrality. Betweenness is a measure of 

the importance of each node as an intermediate gateway in 

the paths between any other two nodes. We measure is 

highly central nodes are also large planets.  

 Pearson correlation between the size of the nodes and 

their degree.  

 Size assortativity, i.e., Pearson correlation coefficient 

between the size of nodes connected in the graph (i.e., the 

extent to which plantes are linked to other planets of larger 

or smaller size)  

As with geometrical measures, these topological measures 

can be used to characterize a map and define a distance metric 

among them. However, some of these measures turn out to be 

somewhat redundant. By considering a collection of 20 maps 

(10 with good aesthetics and 10 with bad aesthetics as tagged 

by a human expert) and using a Random Forest classifier to 

determine which measures are useful for classification 

purposes we obtain that graph’s density, correlation between 

node size and betweenness and size assortativity are the most 

relevant ones – see [23] for further details. 

If we run an EA using distance to aesthetic maps (to be 

minimized) and to non-aesthetic maps (to be maximized) in a 

multi-objective approach, we observe that there is a smooth, 

linear transition between these two objectives. More 

qualitatively, we created two self-organizing map (SOM) [16] 

with 32×32 process units over a non-toroidal rectangular 

layout, one for each characterization approach (geometrical 

and topological). As we can see in Figure 3, the SOM of the 

geometrical approach set a separation between non-aesthetic 

(yellow zones) and aesthetic maps (cyan zones), as well as 

generated maps (magenta zones) share the same region as 

aesthetic maps. Thus, they can be considered aesthetic as well. 

Regarding the topological approach, the distinction between 

aesthetic and non-aesthetic maps is not so clear though, as 

shown by the overlapped areas. 

C. Self-learning of RTS strategies 

As another branch of PCG, the search of game strategies via 

computational intelligence (CI) emerges as an important sub-

field. RTS games are specifically distinguished for imposing 

the players the control of many different resources during the 

game. For this reason the procedural generation of game 

strategies should be backed up by methods allowing a 

significant reduction of the computational time involved in the 

exploration of the large search spaces implied. We are here 

specifically concerned with the use of techniques providing 

continuous, autonomous learning capabilities for the artificial 

intelligence embedded in a RTS game. We consider 

coevolution for this purpose. 

Coevolution is a model inspired in the principles of natural 

evolutionary theory. It is based on the interaction between 

different species and can take two forms: one based in the 

collaboration and other one based on competition. Cooperative 

approaches simulate a symbiotic relationship, used for finding 

          
 

 (a) (b) (c) (d) 

 

Fig. 3.  Map’s distribution over the SOM for both geometric (a) and topological (b) approaches. Yellow for non-aesthetic, cyan for aesthetic and magenta for 

non-dominated. (c) and (d) show the topological approach solution projected over the geometric approach SOM and vice versa. 
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a solution through the collaboration between many possible 

solution components; on the other hand, competitive 

approaches establish a competition between individuals much 

like a predator/prey environment. The goal is to trigger an 

“arms race” in which the improvement of some individuals 

stimulates the improvement in the opponents, and vice versa. 

This last approach is usually used for solving optimization 

problems in inherently competitive contexts like games. 

Several experiments have showed significant results in the 

application of coevolutionary models as a mechanism of self-

learning in a RTS. For example, different variants of 

competitive coevolutionary (CC) algorithms [3], [15], [1] have 

been proposed to find optimal strategies for the Tempo game. 

Also, the authors of [2] analyzed the employment of 

coevolution for creating a tactical controller for small groups 

of game entities in a real-time capture-the-flag game. The 

proposal described in [6] explores several methods for 

automatically shaping the coevolutionary process by 

modifying the fitness function as well as the environment 

during evolution. 

The success of the application of coevolutionary 

approaches is out of question but coevolution has also its own 

intrinsic problems – see [8], [7]. In particular the evaluation 

mechanism is a key point in a coevolutionary model because it 

guides the arms race that emerges from the interactions 

between individuals. For this reason several evaluation 

approaches have been proposed in the literature to alleviate 

some of the coevolutionary pathologies. In this line of work we 

have already explored the use of the Hall-of-Fame (HoF) [32] 

based mechanism as an archive method to memorize the 

successful solutions to guide the search process for generating 

game strategies in RTS games. This mechanism is used to 

provide a long term memory of the coevolutionary process, 

avoiding that some good strategies are forgotten due to lack of 

selective pressure. 

Our first works [28],[29] were conducted in the context of 

the RTS game RobotWars
7
. The main goal was generating 

game strategies to control the behavior of an army. RobotWars 

is a self-developed game for testing game AI strategies (i.e. 

 
7 http://www.lcc.uma.es/∼afdez/robotWars 

bots), and hence human players do not have place here. It is a 

two player’s game, in which two different armies fight in a 3D 

scenario with many obstacles (Figure 4 shows a screenshot of 

this game). Each army has different units and one general; if 

an army wipes out the enemy general them they will be the 

winners of the game. 

 Using this RTS game five variants of a CC algorithm 

using HoF as a memory mechanism to keep the winning 

strategies were tested. In our model the individual was 

represented as a matrix of actions that allows to control, 

deterministically, the behavior of an army during the game. 

The basic coevolutionary schema implemented is showed in 

Figure 5. It is based in coevolutionary turns of multiple 

strategies for each army. The goal is to find a winning strategy 

which is then put in that player’s HoF. That HoF is then used 

in the evolution of strategies for the other army until a new 

winning strategy is found, placed in the corresponding HoF, 

and the roles are reversed again. If at the end of the 

coevolutionary turn no solution is obtained, a new turn starts 

again until a champion is found or until the maximum number 

of cycles is reached.  

During experiments in RobotWars we analyzed how the 

diversity and growth of the HoF can influence the quality of 

the solutions obtained by HoF-based CC algorithms. In this 

sense we studied the performance of eleven algorithms based 

on different mechanisms for maintaining and updating the 

champions’ memory during the evaluation process. This was 

aimed to reduce the size of the HoF (hence reducing 

computational time) but doing so in an intelligent way, without 

losing the beneficial contribution of the long term memory. A 

diversity indicator based on the contribution to each champion 

to the diversity of the HoF diversity showed a good 

performance (i.e., the HoF was reducing by removing similar 

champions which did not contribute much to the 

coevolutionary learning). We also detected that manipulating 

the size of the HoF has a direct influence on the quality of the 

search result due to the loss of transitivity (a solution A beating 

another solution B which in turns beats C which can however 

beat A), so this should be done carefully. 

That previous work was extended in [30] proposing a 

different evaluation mechanism to exploit the potential offered 

 
Fig. 4.  Screenshot of RobotWars game. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5.  Basic coevolutionary cycle which uses the HoF during the evaluation 

process. 
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by archive methods to maintain transitivity between the 

solutions; we considered a new RTS game –Planet Wars, 

described before– allowing a deeper experimental analysis and 

more consistent conclusions. This time we added novel 

strength indicators that were independent from the fitness 

function with the objective of avoiding the appearance of 

cycling (strategies being forgotten and re-discovered over and 

over again). The novelty of this last aspect consisted of 

incorporating into our prime CC algorithm which used the 

HoF as shown in Figure 5, an additional archive (termed call-

of-celebrities, HoC) that contained a team of experienced 

virtual players. These were used to evaluate how strong a 

candidate was. The combined use of both halls (HoF and HoC) 

with the (possibly combined) utilization of diversity and 

quality metrics helped the optimization to obtain competitive 

bots that self-adapt to beat their (co)evolved enemies.  

IV. CONCLUSION 

Procedural Content Generation (PCG) is one of the corner 

stones of the modern video game industry. Throughout this 

paper we have described three case studies that are part of our 

work in the area of PCG for real-time strategy video games. In 

the first place, we have presented and compared several 

methods for generating maps for the game Planet Wars; such 

maps are firstly oriented to fulfill the requirements of the 

player in terms of playability, that is, providing an interesting 

and enjoyable experience as to what the game mechanics 

regards. This has been done characterizing some positive 

features a game should have such as balance (having an 

opponent with similar skills as the player, as reflected in the 

achievements of the former in the game with respect to those 

of the latter) and dynamism (delivering an existing game in 

which numerous events unfold and there are changes in the 

balance of power between the two players). It has been shown 

how maps with these features can be accomplished by using an 

evolutionary approach for their automatic generation. 

Subsequently, we have considered the aesthetics perspective. 

Given the highly subjective nature of this endeavor, the input 

of an expert is required in order to provide samples of 

aesthetic/non-aesthetic maps, which can be in turn used by an 

evolutionary algorithm as reference to reproduce features of 

good maps, and avoid features of bad maps. Such features 

admit different characterizations; we have described the use of 

both geometrical (based on the spatial distribution of map 

components), morphological (based on the individual 

properties of map components) and topological (based on 

properties of the maps which are invariant under simple 

geometrical transformations). By using an unsupervised 

learning method we can infer that an evolutionary approach 

based on these characterizations is capable of producing 

aesthetic maps. 

Afterwards, we have extended the classical view of PCG by 

considering game AI as game content; in particular, we have 

considered NPC behavior and we have briefly described a self-

learning approach that we employed on two RTS games with 

significant success. To do so, we used co-evolutionary 

techniques to lead the search process in a competitive context; 

we have also shown that our algorithmic proposals were based 

on the concept of Hall-of-fame (HoF) that basically represents 

a memory that allows to store the best candidates that are 

further employed in the evaluation phases to improve the 

optimization process. A number of different structures and 

mechanisms to select the champions to be stored in the HoF 

can be defined and this selection can have drastic influence in 

the results. 

Many lines remain open; for instance, in order to accelerate 

the creation process (and as consequence, to minimize 

development costs), the industry demands the automatic 

generation of diverse content at the same time; moreover, there 

are artifacts that surely influence the creation of other class of 

elements, and vice versa. This basically means that PCG 

should be defined to enable the generation of contents (of 

distinct nature) at the same time with the goal of producing 

compound components. Our next step follows precisely this 

line of research and it consists of designing PCG methods to 

co-evolve graphical content (e.g., maps/levels) and game AI. 

In addition, obtaining correct quality metrics is an area that 

deserves more research; the evolutionary search directed to 

find high quality content heavily depends on the fitness 

functions that guide the optimization process, and it is not easy 

to evaluate the goodness of these; moreover, content creation 

is directly related to human creativity and, therefore, humans 

(both developers and players) are required to be involved in 

the evolution process: in this sense, designing correct user-

centric interaction evolutionary models is also another line of 

exciting research. 
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