
Special Issue on Digital Economy

-40-

Abstract — Videogames are one of the most important and

profitable sectors in the industry of entertainment. Nowadays, the

creation of a videogame is often a large-scale endeavor and bears

many similarities with, e.g., movie production. On the central

tasks in the development of a videogame is content generation,

namely the definition of maps, terrains, non-player characters

(NPCs) and other graphical, musical and AI-related components

of the game. Such generation is costly due to its complexity, the

great amount of work required and the need of specialized

manpower. Hence the relevance of optimizing the process and

alleviating costs. In this sense, procedural content generation

(PCG) comes in handy as a means of reducing costs by using

algorithmic techniques to automatically generate some game

contents. PCG also provides advantages in terms of player

experience since the contents generated are typically not fixed but

can vary in different playing sessions, and can even adapt to the

player herself. For this purpose, the underlying algorithmic

technique used for PCG must be also flexible and adaptable. This

is the case of computational intelligence in general and

evolutionary algorithms in particular. In this work we shall

provide an overview of the use of evolutionary intelligence for

PCG, with special emphasis on its use within the context of real-

time strategy games. We shall show how these techniques can

address both playability and aesthetics, as well as improving the

game AI.

Keywords — Procedural Content Generation, Artificial

Intelligence, game strategy, self-learning.

I. INTRODUCTION

PURRED on by the emergence of the videogame industry

as the main component of the entertainment industry has

motivated, research on videogames has acquired increasing

notoriety during the last years. Such research spans many areas

such as marketing and gamification, psychology and player

satisfaction, computational intelligence, education and health

(serious games) and computer graphics, just to cite a few. This

diversification of research areas is largely motivated by a shift

in the priorities of the video game industry: while games used

to rely heavily on their graphical quality, other features such as

the music, the player immersion into the game and interesting

storyline have gained enormous importance. To cope with the

plethora of new interesting challenges in the area of

videogames, artificial and computational intelligence are

turning out to be instrumental tools [25].

We recently carried out a mathematical, network-based

study of the research community in the field of computational

intelligence in video games [22] and obtained conclusive

evidence of the vibrant activity of the field, which is steadily

gaining momentum (as reflected in the growth patterns of new

researchers and new publications). Still, the community of

computational intelligence in video games is not yet fully

developed, and collaboration links are still forming and

improving the cohesion of the community. Besides, the

industry is beginning to adopt the techniques and

recommendations that academia offers.

Procedural Content Generation (PCG) refers to the

algorithmic creation of content for video games, such as maps,

levels, terrains, graphic textures, music, rules, quests,

narrative, and missions among others possible [33];

traditionally, the creation of NPC (non-player controlled)

behavior is not considered as PCG although, in a more global

perspective, it is specific content for the game. The advantages

of automatically creating video game content are manifold:

firstly, it provides a drastic reduction in the cost and time of

development as well as the memory used to store game

artifacts; secondly, PCG provides a mechanism to inspire

human artists to improve their creativity. Therefore, PCG can

be considered from many different points of views and raises a

high number of challenges from both Academic and Industry

[35]. Moreover, the influence of PCG in, at least, other six

areas in game programming, namely, NPC behavior learning,

search and planning, games as Artificial Intelligence (AI)

benchmarks, AI-assisted game design, general game AI, and

AI in commercial games, underlines its importance [39, 40].

From the set of genres of videogames, Real-Time Strategy

(RTS) games are one of the most exciting sub-genres since

they require managing different kind of units and resources in

real-time. In addition, they usually involve the participation of

multiple players (not all of them necessarily human) that have

to deal with incomplete information during the game; it is

precisely this combination of resource management,

multiplayer context and partial knowledge of the world what

makes them an ideal framework to conduct Artificial

Intelligence experiments; indeed, many challenging problems,

such as resource allocation, adversarial real time planning,

Procedural Content Generation for Real-Time

Strategy Games

S

Raúl Lara-Cabrera, Mariela Nogueira-Collazo, Carlos Cotta and Antonio J. Fernández-Leiva

Lenguajes y Ciencias de la Computación department, Universidad de Málaga

DOI: 10.9781/ijimai.2015.325

International Journal of Artificial Intelligence and Interactive Multimedia, Vol. 3, Nº 2.

-41-

spatial and temporal reasoning, opponent modeling, and

opponent strategy prediction, just to name a few, can be

addressed. As a result, RTS games offer a wide variety of

fundamental AI research challenges [20].

In this context, one of the most interesting challenges in the

videogame development process is precisely the procedural

generation of content for RTS games as the artifact creation

can be handled from many different perspectives due to the

heterogeneity of the content that can be produced in RTS

games, and to the participation of multiple (sometimes

hundreds of) players with diverse profiles and skills. This work

deals with the application of PCG techniques in RTS games,

firstly by providing a brief review on this issue and,

consequently, covering specific case studies in which

evolutionary search has been employed to produce game

components that satisfy certain properties.

II. PROCEDURAL CONTENT GENERATION

Videogames provide a wide range of fundamental problems

that are useful for doing research in artificial intelligence.

Among these we can cite real-time task planning and decision-

making under uncertainty. This is particularly true in the case

of Real-Time Strategy (RTS) games, which represent a whole

genre of videogames in which the players must manage a

collection of units and assets without a definite turn structure,

that is, actions are asynchronously taken. Not surprisingly,

RTS games have been used as researching tools to study and

develop new artificial intelligence techniques, as explained in

our paper about RTS games and computational intelligence

[20].

The type of content that PCG techniques are able to create is

very diverse, being maps and levels the prevailing type, as

demonstrated by the large number of papers in the state of the

art which are related to automatic level generation [14]. For

example, Frade et al. introduced the use of genetic

programming for evolving maps for video games, using in this

process both human subjective evaluation and quality

measures such as maps’ accessibility [10] and edge length

[11]. Another example of procedural level generation by Lanzi

et al. [18] consists of evolving game maps that are specifically

designed to improve the balance of the game, so no player has

a marked superiority over the opponent (we will return to this

issue later on).

Regarding other kind of content, Hastings et al. [12, 13],

proposed a PCG algorithm for the game “Galactic Arms Race”

in which the weapons available were generated on the fly. In

this case, the fitness of the generated weapons was computed

based on the amount of time the players used them, hence

measuring the player satisfaction without requiring explicit

feedback from the players. Onuczko et al. [31] presented a tool

prototype for automatically producing specifications for

missions and quests for a role-playing game. Font et al. [9]

showed initial research towards a system capable of creating

the rules for different card games. Collins [5] explored several

approaches to procedural music composition.

Focusing on PCG for RTS games, Togelius et al. [36, 37]

presented a multi-objective evolutionary algorithm whose

objective was to create maps for this kind of games.

Mahlmann et al. [26] described a search-based map generator

for the game Dune 2, which was able to build playable maps

using cellular automata (converting low-resolution matrices

into maps fulfilling gameplay requirements). Finally, Ruela

and Guimaraes [34] used a coevolutionary evolutionary

algorithm aiming to maximize the performance of battle

formations for the strategy game Call of Roma. We will also

tackle coevolution later in this work.

III. CASE STUDIES

Historically, the success of a video game was directly

associated with its graphical quality, but in the last decade this

has changed and having good graphics does not necessarily

ensure high sales. Players demand video games that show

more than just a nice graphical quality and other issues, such

as music, the story, or the atmosphere of the game, influence

the decision of a player to get a specific game. The question of

what it is that attracts the attention of players in a game is easy

to answer: fun. How to obtain fun games and whether we can

predict if the game will be of interest to players are not so

easily answered, though.

There are several theories in the literature on what makes

video games fun and why we play games [17], and, according

to [4], a game’s achievement might be deduced by measuring

in advance the quality of the game (which seems however to

be a difficult task). The notion of fun is difficult to measure as

this depends on each player but it is naturally associated with

the notion of player satisfaction: the greater the satisfaction,

the greater the fun.

A. Playability-oriented PCG

This subsection focuses on the ability of PCG to engage the

player (as commercial games demand) by keeping, during a

match, an adequate trade off between the dynamism of the

game and the balance between players which, probably, have

different skills. More precisely, we aimed to generate maps for

the RTS game Planet Wars, focusing on the properties that a

priori make it entertaining and appealing to play, ensuring that

the games are balanced (i.e., the forces of one of the players

are not overwhelmingly larger than those of the other player –

see [19]) and dynamic (i.e., action packed, there are battles

and changes in the balance of power of the players – see [21])

For this purpose we are going to use evolutionary algorithms

(EAs). An EA is a nature-inspired optimization and search

method that deals with a set of entities (termed population),

which represents a set of possible solutions. These entities,

which are called individuals or chromosomes, compete against

each other so the fittest individuals prevail over time, evolving

towards better solutions. This is an iterative process where

each step involves crossing (mixing information from several

solutions) and mutating (performing random changes)

individuals using genetic operators. Because individuals that

represent the most appropriate solutions (as dictated by a so-

Special Issue on Digital Economy

-42-

called fitness function that measure the goodness of solutions)

are more likely to survive, the population gradually improves.

In order to use an EA, it is necessary to define several

parameters: the individual’s representation, the genetic

operators, the size of the population and the number of

generations the algorithm will be running.

Firstly, we had to consider how the solutions were to be

represented and evaluated. A map for Planet Wars (see [24]

for a description of the game) is defined as a collection of np

planets distributed over a bi-dimensional plane. Each planet is

characterized by its coordinates (xi, yi), its size si (determining

the rate at which this planet produces new ships once captured

by one of the players) and an initial number of ships wi

(determining the forces required to conquer the planet for the

first time). As a result, a map can be described as a list [1, 2,

…, n], where each i is a tuple xi, yi, si, wi.

 Two of the planets (the first two for simplicity) are initially

marked as home planets of the players. From the point of view

of the EA, the he number of planets np need not be fixed, and

can range between an upper and a lower limit (15 and 30 in

our experiments, see, e.g., Figure 1). In fact, one of the

features of the evolutionary approach discussed later on is the

ability to self-adapt to not only search parameters but also to

the complexity (i.e., number of planets) of the map.

Regarding the evaluation of a map’s playability features,

we defined a tournament system which runs several games

between an arbitrary number of pre-defined bots. Then, the

tournament system analyzed some statistics gathered from

each game in order to compute and quantify how balanced and

dynamic the game was. Precisely, the system collects the

following information from the i-th game (out of the total

number of Ng games played in the tournament):

 Territorial imbalance: this is defined as the average

imbalance in conquered planets throughout the game (the

difference between the percentage of planets conquered

by each player at each turn, averaged for all turns).

 Growth imbalance: this is measured analogously to the

territorial imbalance, but considering the combined ship

production capacity rather than the number of planets

conquered (a player may have conquered many planets

but these may be small, whereas other player may only

dominated a few large planets).

 Ship imbalance: the same ideas sketched above are in this

case applied to the number of ships (notice that a player

can accumulate a large number of ships by following a

passive strategy and not getting involved in fights and

vice versa).

 Game length: this is just the percentage of the maximum

number of turns played in the current game. Short games

are imbalanced because it is implied that one of the

player quickly destroys the fleet of its opponent.

 Conquering rate: this is the percentage of plantes

conquered at the end of the game. If it is high, it means

that the players have actively engaged in expanding their

territories rather than sitting in their home planets.

 Reconquering rate: related to the previous measure, this

is the average percentage of plantes whose ownership

changes during the game (a high rate indicates that the

players are actively fighting each other).

 Peak difference: this is actually a collection of variables,

each of them measuring the maximal amplitude of the

variation in any of the resources accounted for, in this

case planets, combined size and ships.

These variables are subsequently averaged across the Ng

games comprised in the tournament. In order to evaluate the

actual balance and dynamism of a map we define a fuzzy rule

base that captures some expert characterization of these

features. For example, in order to account for balance we can

use:

1) if territorial imbalance is LOW and growth imbalance is

LOW then balance is HIGH

2) if territorial imbalance is HIGH and growth imbalance is

low and ship imbalance is LOW then balance is MEDIUM

3) if (territorial imbalance is LOW and growth imbalance is

HIGH) or game length is LOW then balance is LOW

Intuitively, we consider that a map has high balance if the

average imbalance in planets and growth is low during the

game. If one of the players has material advantage in terms of

planets and ships, even if the combined growth is similar, the

we deem the map to have medium balance. Finally, if both

players manage to conquer a similar number of planets but

their sizes are disparate or the game length is short, the map

has low balance. Of course, there is some room for refining

this characterization of balance by considering other

combinations of the variables, but the above serves as an

illustrative example. Similarly, we can define fuzzy rules for

dynamism. For example, we can state that

Fig. 1. A game of Planet Wars in progress. The arrows represent moving

fleets while the number over the planets shows the number of stationed ships.

International Journal of Artificial Intelligence and Interactive Multimedia, Vol. 3, Nº 2.

-43-

1) if conquering rate is HIGH and reconquering rate is HIGH

then dyn is HIGH

2) if all peak differences is HIGH then dyn is HIGH

i.e., if there are many planets being conquered and

reconquered, or the peak differences in all three resources is

high, then dynamism is high (there are battles and action).

Likewise if it turns out that one of the peak differences is

high but any of the other two is not, the dynamism can be said

to be intermediate (this would be captured in a family of three

rules). Finally, if all peak differences are low or the

conquering and reconquering rates are not high and the game

length is very short, the dynamism of the map is considered to

be low.

The procedural map generator used a self-adaptive

evolutionary approach with the solutions encoded as mixed

real-integer vectors. The parameters governing mutation were

also a part of the solutions, thus providing the means for self-

adapting them (see [24] for a full explanation of the

evolutionary algorithm and its parameters and operators). The

players of the tournament system used to assess the quality of

the maps during the evaluation phase were three bots

submitted to the Google AI Challenge 2010, namely Manwe,

Flagscapper’s bot and fglider’s bot. All of them ranked in the

top 100 (there were over 4600 participants) and their source

code was available – see [24] for the URLs.

Experiments focusing separately in either of the two

properties point at the higher difficulty of attaining dynamism

with respect to balance. Figure 2 shows an example of the

maps obtained
6
. Of course it is possible to optimize both

properties at the same time following a multi-objective

approach (the Non-dominated Sorting Genetic Algorithm II –

NSGA-II– in our case). By doing so, we can obtain a collection

of solutions representing different tradeoffs between balance

and dynamism (ranging from highly balanced and lowly

6 It is possible to watch a game on these maps at

http://www.lcc.uma.es/∼raul/maps/maps.html

dynamic to highly dynamic and poorly balanced, with different

intermediate scenarios in which an increase in one the

properties is traded by a decrease in the other). Note in this

sense that a single-objective approach cans easily exploit the

first objective (i.e. balance), providing maps that achieve

perfect balance due to the complete inaction of the players.

However, the situation is different from the point of view of

dynamism, since according to our definition a very unbalanced

game is likely going to be short or feature less alternation

between the players, hence resulting to be non-dynamic as

well. For this reason, the multiobjective approach yields a

graceful degradation of dynamism when balance is increased,

eventually exhibiting an abrupt reduction of the dynamism

upon reaching the high end of balance. Further studies show

that, in general, dynamic games seem to be related to maps

featuring a larger number of planets, widely scattered on the

map and whose sizes are positively correlated to the initial

number of ships.

B. Introducing Aesthetics

In Section ¡Error! No se encuentra el origen de la

referencia.III-A we focused on making the game more fun to

play, obtaining games that are balanced and dynamic.

However, the generated maps lacked aesthetics (for example,

maps with all their planets clustered in a small region, see

Figure 2), which is an interesting feature apart from the fun

that may lead to increase the player satisfaction. It turns out

that fun and aesthetics are two complementary ways of

achieving the same goal [27]. Moreover, non- aesthetic maps

may confuse the player, reducing his/her satisfaction or even

leading him/her to stop playing the game.

Following a similar evolutionary scheme and

representation of the solutions for the automatic generation of

balanced and dynamic maps, we considered different

properties in order to evaluate the aesthetics of maps. We

establish a separation between geometrical features (based on

the spatial properties of the map, namely coordinates and

distances), and topological features (based on qualitative

(a) (b)

Fig. 2. Two examples of maps that have been generated by the algorithm. Planet’s colors denote whether it is conquered by some player (red/blue) or remains

neutral. The number shows how many ships are defending each planet.

Special Issue on Digital Economy

-44-

relationships among planets invariant under geometrical

transformations such as rotation, translation or scaling). We

also take into account morphological features based on

individual planet properties, such as size or initial number of

ships.

These are the geometrical measures:

 Spatial distribution of planets: given planet coordinates we

compute the average distance between planets d and the

standard deviation of these distances d.

 Planet features: given the sizes and initial number of ships

of each planet, we compute the average and standard

deviation of sizes (s and s respectively) and Pearson’s

correlation ϱ between sizes and number of ships.

Thus, we can characterize a map by a 5-tuple d, d, s, s,

ϱ, and use some distance measure (e.g., Euclidean distance) to

determine the geometrical distance among two maps.

As to the topological features, these are extracted from the

sphere-of-influence graph (SIG) of each map, which sets a

relationship between some set of points based on their spatial

arrangement [38] (defining a planet’s radius of influence as the

shortest distance of any other planet, and defining a graph in

which vertex is a planet and edges are defined between planets

whose distance is less or equal to the sum of their respective

radii of influence). Using this SIG we can compute:

 Number of connected components: number of maximal

sub-graphs in which any two vertices are connected by at

least one path.

 Average node’s degree: average number of edges incident

to each node.

 Density of the graph: ratio between the number of edges of

the graph and that of a complete graph with the same

number of vertices.

 Average clustering coefficient: average percentage of each

node’s neighbors which are neighbors of each other too.

 Pearson correlation between the size of the nodes and

their betweenness centrality. Betweenness is a measure of

the importance of each node as an intermediate gateway in

the paths between any other two nodes. We measure is

highly central nodes are also large planets.

 Pearson correlation between the size of the nodes and

their degree.

 Size assortativity, i.e., Pearson correlation coefficient

between the size of nodes connected in the graph (i.e., the

extent to which plantes are linked to other planets of larger

or smaller size)

As with geometrical measures, these topological measures

can be used to characterize a map and define a distance metric

among them. However, some of these measures turn out to be

somewhat redundant. By considering a collection of 20 maps

(10 with good aesthetics and 10 with bad aesthetics as tagged

by a human expert) and using a Random Forest classifier to

determine which measures are useful for classification

purposes we obtain that graph’s density, correlation between

node size and betweenness and size assortativity are the most

relevant ones – see [23] for further details.

If we run an EA using distance to aesthetic maps (to be

minimized) and to non-aesthetic maps (to be maximized) in a

multi-objective approach, we observe that there is a smooth,

linear transition between these two objectives. More

qualitatively, we created two self-organizing map (SOM) [16]

with 32×32 process units over a non-toroidal rectangular

layout, one for each characterization approach (geometrical

and topological). As we can see in Figure 3, the SOM of the

geometrical approach set a separation between non-aesthetic

(yellow zones) and aesthetic maps (cyan zones), as well as

generated maps (magenta zones) share the same region as

aesthetic maps. Thus, they can be considered aesthetic as well.

Regarding the topological approach, the distinction between

aesthetic and non-aesthetic maps is not so clear though, as

shown by the overlapped areas.

C. Self-learning of RTS strategies

As another branch of PCG, the search of game strategies via

computational intelligence (CI) emerges as an important sub-

field. RTS games are specifically distinguished for imposing

the players the control of many different resources during the

game. For this reason the procedural generation of game

strategies should be backed up by methods allowing a

significant reduction of the computational time involved in the

exploration of the large search spaces implied. We are here

specifically concerned with the use of techniques providing

continuous, autonomous learning capabilities for the artificial

intelligence embedded in a RTS game. We consider

coevolution for this purpose.

Coevolution is a model inspired in the principles of natural

evolutionary theory. It is based on the interaction between

different species and can take two forms: one based in the

collaboration and other one based on competition. Cooperative

approaches simulate a symbiotic relationship, used for finding

 (a) (b) (c) (d)

Fig. 3. Map’s distribution over the SOM for both geometric (a) and topological (b) approaches. Yellow for non-aesthetic, cyan for aesthetic and magenta for

non-dominated. (c) and (d) show the topological approach solution projected over the geometric approach SOM and vice versa.

International Journal of Artificial Intelligence and Interactive Multimedia, Vol. 3, Nº 2.

-45-

a solution through the collaboration between many possible

solution components; on the other hand, competitive

approaches establish a competition between individuals much

like a predator/prey environment. The goal is to trigger an

“arms race” in which the improvement of some individuals

stimulates the improvement in the opponents, and vice versa.

This last approach is usually used for solving optimization

problems in inherently competitive contexts like games.

Several experiments have showed significant results in the

application of coevolutionary models as a mechanism of self-

learning in a RTS. For example, different variants of

competitive coevolutionary (CC) algorithms [3], [15], [1] have

been proposed to find optimal strategies for the Tempo game.

Also, the authors of [2] analyzed the employment of

coevolution for creating a tactical controller for small groups

of game entities in a real-time capture-the-flag game. The

proposal described in [6] explores several methods for

automatically shaping the coevolutionary process by

modifying the fitness function as well as the environment

during evolution.

The success of the application of coevolutionary

approaches is out of question but coevolution has also its own

intrinsic problems – see [8], [7]. In particular the evaluation

mechanism is a key point in a coevolutionary model because it

guides the arms race that emerges from the interactions

between individuals. For this reason several evaluation

approaches have been proposed in the literature to alleviate

some of the coevolutionary pathologies. In this line of work we

have already explored the use of the Hall-of-Fame (HoF) [32]

based mechanism as an archive method to memorize the

successful solutions to guide the search process for generating

game strategies in RTS games. This mechanism is used to

provide a long term memory of the coevolutionary process,

avoiding that some good strategies are forgotten due to lack of

selective pressure.

Our first works [28],[29] were conducted in the context of

the RTS game RobotWars
7
. The main goal was generating

game strategies to control the behavior of an army. RobotWars

is a self-developed game for testing game AI strategies (i.e.

7 http://www.lcc.uma.es/∼afdez/robotWars

bots), and hence human players do not have place here. It is a

two player’s game, in which two different armies fight in a 3D

scenario with many obstacles (Figure 4 shows a screenshot of

this game). Each army has different units and one general; if

an army wipes out the enemy general them they will be the

winners of the game.

 Using this RTS game five variants of a CC algorithm

using HoF as a memory mechanism to keep the winning

strategies were tested. In our model the individual was

represented as a matrix of actions that allows to control,

deterministically, the behavior of an army during the game.

The basic coevolutionary schema implemented is showed in

Figure 5. It is based in coevolutionary turns of multiple

strategies for each army. The goal is to find a winning strategy

which is then put in that player’s HoF. That HoF is then used

in the evolution of strategies for the other army until a new

winning strategy is found, placed in the corresponding HoF,

and the roles are reversed again. If at the end of the

coevolutionary turn no solution is obtained, a new turn starts

again until a champion is found or until the maximum number

of cycles is reached.

During experiments in RobotWars we analyzed how the

diversity and growth of the HoF can influence the quality of

the solutions obtained by HoF-based CC algorithms. In this

sense we studied the performance of eleven algorithms based

on different mechanisms for maintaining and updating the

champions’ memory during the evaluation process. This was

aimed to reduce the size of the HoF (hence reducing

computational time) but doing so in an intelligent way, without

losing the beneficial contribution of the long term memory. A

diversity indicator based on the contribution to each champion

to the diversity of the HoF diversity showed a good

performance (i.e., the HoF was reducing by removing similar

champions which did not contribute much to the

coevolutionary learning). We also detected that manipulating

the size of the HoF has a direct influence on the quality of the

search result due to the loss of transitivity (a solution A beating

another solution B which in turns beats C which can however

beat A), so this should be done carefully.

That previous work was extended in [30] proposing a

different evaluation mechanism to exploit the potential offered

Fig. 4. Screenshot of RobotWars game.

Fig. 5. Basic coevolutionary cycle which uses the HoF during the evaluation

process.

Special Issue on Digital Economy

-46-

by archive methods to maintain transitivity between the

solutions; we considered a new RTS game –Planet Wars,

described before– allowing a deeper experimental analysis and

more consistent conclusions. This time we added novel

strength indicators that were independent from the fitness

function with the objective of avoiding the appearance of

cycling (strategies being forgotten and re-discovered over and

over again). The novelty of this last aspect consisted of

incorporating into our prime CC algorithm which used the

HoF as shown in Figure 5, an additional archive (termed call-

of-celebrities, HoC) that contained a team of experienced

virtual players. These were used to evaluate how strong a

candidate was. The combined use of both halls (HoF and HoC)

with the (possibly combined) utilization of diversity and

quality metrics helped the optimization to obtain competitive

bots that self-adapt to beat their (co)evolved enemies.

IV. CONCLUSION

Procedural Content Generation (PCG) is one of the corner

stones of the modern video game industry. Throughout this

paper we have described three case studies that are part of our

work in the area of PCG for real-time strategy video games. In

the first place, we have presented and compared several

methods for generating maps for the game Planet Wars; such

maps are firstly oriented to fulfill the requirements of the

player in terms of playability, that is, providing an interesting

and enjoyable experience as to what the game mechanics

regards. This has been done characterizing some positive

features a game should have such as balance (having an

opponent with similar skills as the player, as reflected in the

achievements of the former in the game with respect to those

of the latter) and dynamism (delivering an existing game in

which numerous events unfold and there are changes in the

balance of power between the two players). It has been shown

how maps with these features can be accomplished by using an

evolutionary approach for their automatic generation.

Subsequently, we have considered the aesthetics perspective.

Given the highly subjective nature of this endeavor, the input

of an expert is required in order to provide samples of

aesthetic/non-aesthetic maps, which can be in turn used by an

evolutionary algorithm as reference to reproduce features of

good maps, and avoid features of bad maps. Such features

admit different characterizations; we have described the use of

both geometrical (based on the spatial distribution of map

components), morphological (based on the individual

properties of map components) and topological (based on

properties of the maps which are invariant under simple

geometrical transformations). By using an unsupervised

learning method we can infer that an evolutionary approach

based on these characterizations is capable of producing

aesthetic maps.

Afterwards, we have extended the classical view of PCG by

considering game AI as game content; in particular, we have

considered NPC behavior and we have briefly described a self-

learning approach that we employed on two RTS games with

significant success. To do so, we used co-evolutionary

techniques to lead the search process in a competitive context;

we have also shown that our algorithmic proposals were based

on the concept of Hall-of-fame (HoF) that basically represents

a memory that allows to store the best candidates that are

further employed in the evaluation phases to improve the

optimization process. A number of different structures and

mechanisms to select the champions to be stored in the HoF

can be defined and this selection can have drastic influence in

the results.

Many lines remain open; for instance, in order to accelerate

the creation process (and as consequence, to minimize

development costs), the industry demands the automatic

generation of diverse content at the same time; moreover, there

are artifacts that surely influence the creation of other class of

elements, and vice versa. This basically means that PCG

should be defined to enable the generation of contents (of

distinct nature) at the same time with the goal of producing

compound components. Our next step follows precisely this

line of research and it consists of designing PCG methods to

co-evolve graphical content (e.g., maps/levels) and game AI.

In addition, obtaining correct quality metrics is an area that

deserves more research; the evolutionary search directed to

find high quality content heavily depends on the fitness

functions that guide the optimization process, and it is not easy

to evaluate the goodness of these; moreover, content creation

is directly related to human creativity and, therefore, humans

(both developers and players) are required to be involved in

the evolution process: in this sense, designing correct user-

centric interaction evolutionary models is also another line of

exciting research.

REFERENCES

[1] P. Avery et al., “Coevolving a computer player for resource allocation

games: using the game of tempo as a test space.” Ph.D. dissertation,

School of Computer Science University of Adelaide, 2008.

[2] [2] P. Avery and S. J. Louis, “Coevolving team tactics for a real-time

strategy game,” in IEEE Congress on Evolutionary Computation.

Barcelona, Spain: IEEE, 2010, pp. 1–8.

[3] P. M. Avery and Z. Michalewicz, “Static experts and dynamic enemies

in coevolutionary games,” in IEEE Congress on Evolutionary

Computation. IEEE, 2007, pp. 4035–4042.

[4] C. Browne and F. Maire, “Evolutionary game design,” IEEE Trans.

Comput. Intellig. and AI in Games, vol. 2, no. 1, pp. 1–16, 2010.

[5] [5] K. Collins, “An introduction to procedural music in video games,”

Contemporary Music Review, vol. 28, no. 1, pp. 5–15, 2009.

[6] A. Dziuk and R. Miikkulainen, “Creating intelligent agents through

shaping of coevolution,” in IEEE Congress on Evolutionary

Computation. New Orleans, LA, USA: IEEE, 2011, pp. 1077–1083.

[7] M. Ebner, R. A. Watson, and J. Alexander, “Coevolutionary Dynamics

of Interacting Species,” in Applications of Evolutionary Computation,

EvoApplicatons 2010 (EvoApplications (1)), ser. Lecture Notes in

Computer Science, C. D. Chio et al., Eds., vol. 6024. Istanbul, Turkey:

Springer, 2010, pp. 1–10.

[8] S. G. Ficici and A. Bucci, “Advanced tutorial on coevolution,” in 2007

GECCO Conference Companion on Genetic and Evolutionary

Computation. New York, USA: ACM, 2007, pp. 3172–3204.

[9] J. Font, T. Mahlmann, D. Manrique, and J. Togelius, “A card game

description language,” in Applications of Evolutionary Computation,

ser. Lecture Notes in Computer Science, A. Esparcia-Alcázar, Ed.

Springer Berlin Heidelberg, 2013, vol. 7835, pp. 254–263.

International Journal of Artificial Intelligence and Interactive Multimedia, Vol. 3, Nº 2.

-47-

[10] M. Frade, F. F. de Vega, and C. Cotta, “Breeding terrains with genetic

terrain programming: The evolution of terrain generators,” International

Journal of Computer Games Technology, vol. 2009.

[11] ------, “Evolution of artificial terrains for video games based on

obstacles edge length,” in IEEE Congress on Evolutionary Computation.

IEEE, 2010, pp. 1–8.

[12] E. J. Hastings, R. K. Guha, and K. O. Stanley, “Automatic content

generation in the Galactic Arms Race video game,” Computational

Intelligence and AI in Games, IEEE Transactions on, vol. 1, no. 4, pp.

245–263, 2009.

[13] ------, “Evolving content in the Galactic Arms Race video game,” in

Computational Intelligence and Games, 2009. CIG 2009. IEEE

Symposium on. IEEE, 2009, pp. 241–248.

[14] M. Hendrikx, S. Meijer, J. Van Der Velden, and A. Iosup, “Procedural

content generation for games: A survey,” ACM Trans. Multimedia

Comput. Commun. Appl., vol. 9, no. 1, pp. 1:1–1:22, Feb. 2013.

[15] R. Johnson, M. Melich, Z. Michalewicz, and M. Schmidt,

“Coevolutionary Tempo game,” in Evolutionary Computation. CEC’04.

Congress on, vol. 2, 2004, pp. 1610–1617.

[16] T. Kohonen, “The self-organizing map,” Proceedings of the IEEE,

vol. 78, no. 9, pp. 1464–1480, 1990.

[17] R. Koster, A theory of fun for game design. Paraglyph Press, 2004.

[18] P. L. Lanzi, D. Loiacono, and R. Stucchi, “Evolving maps for match

balancing in first person shooters,” in 2014 IEEE Conference on

Computational Intelligence and Games, CIG 2014, Dortmund,

Germany, August 26-29, 2014, 2014, pp. 1–8.

[19] R. Lara-Cabrera, C. Cotta, and A. J. Fernández-Leiva, “A procedural

balanced map generator with self-adaptive complexity for the real-time

strategy game planet wars,” in Applications of Evolutionary

Computation 2013, ser. Lecture Notes in Computer Science,

A. Esparcia-Alcázar et al., Eds., vol. 7835.Berlin Heidelberg: Springer-

Verlag, 2013, pp. 274–283.

[20] ------, “A review of computational intelligence in RTS games,” in IEEE

Symposium on Foundations of Computational Intelligence, FOCI 2013,

Singapore, Singapore, April 16-19, 2013, 2013, pp. 114–121.

[21] ------, “Using self-adaptive evolutionary algorithms to evolve

dynamism-oriented maps for a real time strategy game,” in Large-Scale

Scientific Computing - 9th International Conference, LSSC 2013,

Sozopol, Bulgaria, June 3-7, 2013. Revised Selected Papers, 2013, pp.

256–263.

[22] ------, “An analysis of the structure and evolution of the scientific

collaboration network of computer intelligence in games,” Physica A:

Statistical Mechanics and its Applications, vol. 395, no. 0, pp. 523 –

536, 2014.

[23] ------, “Geometrical vs topological measures for the evolution of

aesthetic maps in a rts game,” Entertainment Computing, vol. 5, no. 4,

pp. 251–258, 2014.

[24] ------, “On balance and dynamism in procedural content generation with

self-adaptive evolutionary algorithms,” Natural Computing, vol. 13,

no. 2, pp. 157–168, 2014.

[25] S. M. Lucas, M. Mateas, M. Preuss, P. Spronck, and J. Togelius, Eds.,

Artificial and Computational Intelligence in Games, ser. Dagstuhl

Follow-Ups, vol. 6. Schloss Dagstuhl - Leibniz-Zentrum fuer

Informatik, 2013.

[26] T. Mahlmann, J. Togelius, and G. N. Yannakakis, “Spicing up map

generation,” in EvoApplications, ser. Lecture Notes in Computer

Science, C. D. Chio et al., Eds., vol. 7248. Springer, 2012, pp. 224–233.

[27] M. Nogueira, C. Cotta, and A. J. Fernández-Leiva, “On modeling,

evaluating and increasing players’ satisfaction quantitatively: Steps

towards a taxonomy,” in Applications of Evolutionary Computation,

ser. Lecture Notes in Computer Science, C. D. Chio et al., Eds., vol.

7248.Málaga, Spain: Springer-Verlag, 2012, pp. 245–254.

[28] M. Nogueira, J. Gálvez, C. Cotta, and A. J. Fernández-Leiva, “Hall of

Fame based competitive coevolutionary algorithms for optimizing

opponent strategies in a new RTS game,” in 13th annual European

conference on simulation and AI in computer games (GAME-ON 2012),

A. F.-L. et al., Ed. Málaga, Spain: Eurosis, November 2012, pp. 71–78.

[29] M. Nogueira Collazo, C. Cotta, and A. J. Fernández Leiva, “An analysis

of hall-of-fame strategies in competitive coevolutionary algorithms for

self-learning in RTS games,” in Learning and Intelligent Optimization -

7th International Conference, LION 7, Catania, Italy, January 7-11,

Revised Selected Papers, ser. Lecture Notes in Computer Science,

G. Nicosia and P. M. Pardalos, Eds., vol. 7997. Springer, 2013, pp.

174–188.

[30] ------, “Virtual player design using self-learning via competitive

coevolutionary algorithms,” Natural Computing, vol. 13, no. 2, pp. 131–

144, 2014.

[31] C. Onuczko, D. Szafron, J. Schaeffer, M. Cutumisu, J. Siegel,

K. Waugh, and A. Schumacher, “Automatic story generation for

computer role-playing games.” in AIIDE, 2006, pp. 147–148.

[32] C. Rosin and R. Belew, “New methods for competitive coevolution,”

Evolutionary Computation, vol. 5, no. 1, pp. 1–29, 1997.

[33] N. Shaker, J. Togelius, and M. J. Nelson, Procedural Content

Generation in Games: A Textbook and an Overview of Current

Research. Springer, 2014.

[34] A. Siqueira Ruela and F. Gadelha Guimaraes, “Coevolutionary

procedural generation of battle formations in massively multiplayer

online strategy games,” in Computer Games and Digital Entertainment

(SBGAMES), 2014 Brazilian Symposium on, Nov 2014, pp. 89–98.

[35] J. Togelius, A. J. Champandard, P. L. Lanzi, M. Mateas, A. Paiva,

M. Preuss, and K. O. Stanley, “Procedural content generation: Goals,

challenges and actionable steps,” in Artificial and Computational

Intelligence in Games, ser. Dagstuhl Follow-Ups, S. M. Lucas, et al.,

Eds. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2013, vol. 6,

pp. 61–75. [Online].

[36] J. Togelius, M. Preuss, N. Beume, S. Wessing, J. Hagelback, and G. N.

Yannakakis, “Multiobjective exploration of the Starcraft map space,” in

Computational Intelligence and Games (CIG), 2010 IEEE Symposium

on. IEEE, 2010, pp. 265–272.

[37] J. Togelius, M. Preuss, and G. N. Yannakakis, “Towards multiobjective

procedural map generation,” in Proceedings of the 2010 Workshop on

Procedural Content Generation in Games. ACM, 2010, p. 3.

[38] G. T. Toussaint, “A graph-theoretic primal sketch,” Computational

Morphology, pp. 229–260, 1988.

[39] G. Yannakakis and J. Togelius, “A panorama of artificial and

computational intelligence in games,” Computational Intelligence and

AI in Games, IEEE Transactions on, vol. PP, no. 99, pp. 1–1, 2014.

[40] Broncano, C. J., C. Pinilla, R. Gonzalez-Crespo, and A. Castillo-Sanz,

"Relative Radiometric Normalization of Multitemporal images",

International Journal of Artificial Intelligence and Interactive

Multimedia, vol. 1, issue A Direct Path to Intelligent Tools, no. 3, pp.

53-58, 12/2010

Raúl Lara-Cabrera received the Bachelor’s degree in

computer science and the Master’s degree in software

engineering and artificial intelligence from the

University of Málaga (UMA), Spain, where he is

currently pursuing the Ph.D., focusing his research on

fields related to artificial intelligence and video games.

He is currently a researcher with the Lenguajes y

Ciencias de la Computación department.

Mariela Nogueira-Collazo obtained the Bachelors

degree in Computer Science by the University of

Computer Science (UCI) of The Havana, Cuba; and the

Master’s degree in Software Engineering and Artificial

Intelligence from the University of Málaga (UMA),

Spain. Currently she is pursuing the Ph.D. in UMA and

her research cover the application of artificial

intelligence in videogames context.

Carlos Cotta obtained his MSc and PhD in Computer

Science from the University of Málaga (UMA), Spain

in 1994 and 1998 respectively. He holds a tenured

Professorship in the Department of Lenguajes y

Ciencias de la Computación of this University since

2001. His main research areas involve metaheuristic

optimization -in particular hybrid and memetic

approaches- with a focus on both algorithmic and

applied aspects (particularly combinatorial optimization) as well as complex

systems.

Special Issue on Digital Economy

-48-

Antonio J. Fernández-Leiva received, in 2002, the

PhD degree in Computer Science from the

University of Málaga (UMA), where he is currently

associate professor in the Lenguajes y Ciencias de la

Computación department. In the past, he worked in

private companies as computer engineer. His main

areas of research involve both the application of

metaheuristics techniques to combinatorial

optimization and the employment of Computational Intelligence in Games.

He also leads a Master on Design and Programming of Videogames at UMA.

