DeepFair: Deep Learning for Improving Fairness in Recommender Systems
Autor:
Bobadilla, Jesús
; Lara-Cabrera, Raúl
; González-Prieto, Ángel
; Ortega, Fernando
Fecha:
06/2021Palabra clave:
Revista / editorial:
International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI)Tipo de Ítem:
articleDirección web:
https://www.ijimai.org/journal/bibcite/reference/2862Resumen:
The lack of bias management in Recommender Systems leads to minority groups receiving unfair recommendations. Moreover, the trade-off between equity and precision makes it difficult to obtain recommendations that meet both criteria. Here we propose a Deep Learning based Collaborative Filtering algorithm that provides recommendations with an optimum balance between fairness and accuracy. Furthermore, in the recommendation stage, this balance does not require an initial knowledge of the users’ demographic information. The proposed architecture incorporates four abstraction levels: raw ratings and demographic information, minority indexes, accurate predictions, and fair recommendations. Last two levels use the classical Probabilistic Matrix Factorization (PMF) model to obtain users and items hidden factors, and a Multi-Layer Network (MLN) to combine those factors with a ‘fairness’ (ß) parameter. Several experiments have been conducted using two types of minority sets: gender and age. Experimental results show that it is possible to make fair recommendations without losing a significant proportion of accuracy.
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(es)
Estadísticas de uso
Año |
2012 |
2013 |
2014 |
2015 |
2016 |
2017 |
2018 |
2019 |
2020 |
2021 |
2022 |
2023 |
2024 |
Vistas |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
30 |
40 |
58 |
Descargas |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
26 |
20 |
29 |
Ítems relacionados
Mostrando ítems relacionados por Título, autor o materia.
-
Neural Collaborative Filtering Classification Model to Obtain Prediction Reliabilities
Bobadilla, Jesús; Gutiérrez, Abraham; Alonso, Santiago; González-Prieto, Ángel (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 06/2022)Neural collaborative filtering is the state of art field in the recommender systems area; it provides some models that obtain accurate predictions and recommendations. These models are regression-based, and they just return ... -
I Congreso Español de Videojuegos 2022
González Calero, Pedro Antonio; Gómez Martín, Marco Antonio; Gómez Martín, Pedro Pablo; Gutiérrez Manjón, Sergio; Gutiérrez Sánchez, Pablo; Peinado, Federico; Sánchez-Ruiz Granados, Antonio; Barbancho, Isabel; Blanco Bueno, Carlos; Botella Nicolás, Ana María; Chover, Miguel; Díaz Álvarez, Josefa; Echeverría, Jorge; Fernández Leiva, Antonio J.; Fernández Ruiz, Marta; Gallego-Durán, Francisco; García Sánchez, Pablo; Gutiérrez Vela, Francisco L; Lara-Cabrera, Raúl; León, Carlos; Moreno, Jorge L.; Lozano Muñoz, Alejandro; Mayor, Jesús; Medina Medina, Nuria; Mejías-Climent, Laura; Mora, Antonio M; Munarriz, Jaime; Patow, Gustavo A.; Sagredo-Olivenza, Ismael; Salinas, María-José; Sanchez I. Peris, Francesc Josep; Sánchez-Ruiz, Antonio A; Shliakhovchuk, Elena; Tejada, Jesus (CEUR Workshop Proceedings, 2022){Resumen no disponible] -
Calidad de Vida relacionada con la Salud y ciberbullying en una muestra de adolescentes
Beranuy-Fargues, Marta; Pérez-Sancho, Carlota; Gutiérrez-Ortega, Mónica; Pérez-Lorenzo, Jesús Fernando; Baridon Chauvie, Daniela; González-Cabrera, Joaquín (Ediciones Universidad San Jorge, 06/2018)La Calidad de Vida Relacionada con la Salud (CVRS) es un constructo multidimensional que se ha construido como una variable relevante para el estudio de la salud y del bienestar. El ciberacoso es una forma de violencia ...