Mostrar el registro sencillo del ítem

dc.contributor.authorIglesias Comesaña, Carla
dc.contributor.authorAntunes, Margarida
dc.contributor.authorAlbuquerque, Teresa
dc.contributor.authorMartínez Torres, Javier
dc.contributor.authorTaboada, Javier
dc.date2020-01
dc.date.accessioned2020-03-20T07:30:28Z
dc.date.available2020-03-20T07:30:28Z
dc.identifier.issn03756742
dc.identifier.urihttps://reunir.unir.net/handle/123456789/9888
dc.description.abstractThe distribution patterns of trace elements are very useful for predicting mineral deposits occurrence. Machine learning techniques were used for the computation of adequate models in trace elements' prediction. The main subject of this research is the definition of an adequate model to predict the amounts of Sn and W in the abandoned mine area of Lardosa (Central Portugal). Stream sediment samples (333) were collected within the study area and their geochemical composition - As, B, Be, Cd, Co, Cr, Cu, Fe, Ni, P, Sn, U, V, W, Y, and Zn - used as input attributes. Different machine learning techniques were tested: Decision Trees (CART), Multilayer Perceptron (MLP) and Support Vector Machines (SVM). For regression and clustering, CART, MLP approaches were tested and for the classification, problem SVM was used. These algorithms used six different inputs – N1 to N6 – aiming to pick out the best-performing model. The results show that CART is the optimized predictor for Sn and W. Concerning the regression approach, correlation coefficients of 0.67 for Sn (with Input N1) and 0.70 for W (with Input N3) were obtained. Regarding the classification problem, an error rate of 0.10 was reached for both Sn (Input N1) and W (Input N2). The classification process is the best methodology to predict Sn and W, using as input the trace element concentrations in the collected stream sediment samples, Lardosa area, Portugal.es_ES
dc.language.isoenges_ES
dc.publisherJournal of Geochemical Explorationes_ES
dc.relation.ispartofseries;vol. 208
dc.relation.urihttps://www.sciencedirect.com/science/article/pii/S0375674218307106?via%3Dihub#!es_ES
dc.rightsopenAccesses_ES
dc.subjectore potentiales_ES
dc.subjectmachine learninges_ES
dc.subjectclassification modeles_ES
dc.subjectSn-W predictiones_ES
dc.subjectstream sedimentses_ES
dc.subjectPortugales_ES
dc.subjectScopuses_ES
dc.subjectJCRes_ES
dc.titlePredicting ore content throughout a machine learning procedure – An Sn-W enrichment case studyes_ES
dc.typeArticulo Revista Indexadaes_ES
reunir.tag~ARIes_ES
dc.identifier.doihttps://doi.org/10.1016/j.gexplo.2019.106405


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem