• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem

    Automatic Discovery of Complementary Learning Resources

    Autor: 
    Romero Zaldivar, Vicente Arturo
    ;
    Crespo García, Raquel M
    ;
    Burgos, Daniel (1)
    ;
    Delgado Kloos, Carlos
    ;
    Pardo, Abelardo
    Fecha: 
    2011
    Palabra clave: 
    personalisation; recommendation; adaptive mentoring; learning analytics; information retrieval; JCR; Scopus(2)
    Tipo de Ítem: 
    conferenceObject
    URI: 
    https://reunir.unir.net/handle/123456789/9852
    DOI: 
    https://doi.org/10.1007/978-3-642-23985-4_26
    Dirección web: 
    https://link.springer.com/chapter/10.1007/978-3-642-23985-4_26#citeas
    Resumen:
    Students in a learning experience can be seen as a community working simultaneously (and in some cases collaboratively) in a set of activities. During these working sessions, students carry out numerous actions that affect their learning. But those actions happening outside a class or the Learning Management System cannot be easily observed. This paper presents a technique to widen the observability of these actions. The set of documents browsed by the students in a course was recorded, during a period of eight weeks. These documents are then processed and the set with highest similarity with the course notes are selected and recommended back to all the students. The main problem is that this user community visits thousands of documents and only a small percent of them are suitable for recommendation. Using a combination of lexican analysis and information retrieval techniques, a fully automatic procedure to analyze these documents, classify them and select the most relevant ones is presented. The approach has been validated with an empirical study in an undergraduate engineering course with more than one hundred students. The recommended resources were rated as "relevant to the course" by the seven instructors with teaching duties in the course.
    Mostrar el registro completo del ítem
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • Artículos Científicos WOS y SCOPUS

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    98
    39
    26
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Monitoring student progress using virtual appliances: A case study 

      Romero Zaldivar, Vicente Arturo; Pardo, Abelardo; Burgos, Daniel (1); Delgado Kloos, Carlos (Computers and Education, 05/2012)
      The interactions that students have with each other, with the instructors, and with educational resources are valuable indicators of the effectiveness of a learning experience. The increasing use of information and ...
    • Meta-rule based recommender systems for educational applications 

      Romero Zaldivar, Vicente Arturo; Burgos, Daniel (1); Pardo, Abelardo (IGI GlobalEducational Recommender Systems and Technologies: Practices and Challenges, 2011)
      Recommendation Systems are central in current applications to help the user find relevant information spread in large amounts of data. Most Recommendation Systems are more effective when huge amounts of user data are ...
    • Meta-Mender: A meta-rule based recommendation system for educational applications 

      Romero Zaldivar, Vicente Arturo; Burgos, Daniel (1) (Procedia Computer Science, 2010)
      Recommenders are central in current applications to help the user find useful information spread in large amounts of data. Most Recommenders are more effective when huge amounts of user data are available in order to ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioAutorización TFG-M

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja