• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem

    Biometric iris recognition using radial basis function neural network

    Autor: 
    Dua, Megha
    ;
    Gupta, Rashmi
    ;
    Khari, Manju
    ;
    González-Crespo, Rubén
    Fecha: 
    11/2019
    Palabra clave: 
    biometrics; iris recognition; iris segmentation; normalization; feed-forward neural network (FNN); radial basis function neural network (RBFNN); JCR; Scopus
    Revista / editorial: 
    Soft Computing
    Tipo de Ítem: 
    Articulo Revista Indexada
    URI: 
    https://reunir.unir.net/handle/123456789/9733
    DOI: 
    https://doi.org/10.1007/s00500-018-03731-4
    Dirección web: 
    https://link.springer.com/article/10.1007%2Fs00500-018-03731-4#citeas
    Resumen:
    The consistent and efficient method for the identification of biometrics is the iris recognition in view of the fact that it has richness in texture information. A good number of features performed in the past are built on handcrafted features. The proposed method is based on the feed-forward architecture and uses k-means clustering algorithm for the iris patterns classification. In this paper, segmentation of iris is performed using the circular Hough transform that realizes the iris boundaries in the eye and isolates the region of iris with no eyelashes and other constrictions. Moreover, Daugman's rubber sheet model is used to transform the resultant iris portion into polar coordinates in the process of normalization. A unique iris code is generated by log-Gabor filter to extract the features. The classification is achieved using neural network structures, the feed-forward neural network and the radial basis function neural network. The experiments have been conducted using the Chinese Academy of Sciences Institute of Automation (CASIA) iris database. The proposed system decreases computation time, size of the database and increases the recognition accuracy as compared to the existing algorithms.
    Mostrar el registro completo del ítem
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • Artículos Científicos WOS y SCOPUS

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    81
    49
    69
    49
    86
    80
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Fingerprint image enhancement and reconstruction using the orientation and phase reconstruction 

      Gupta, Rashmi; Khari, Manju; Gupta, Deepti; González-Crespo, Rubén (Information Sciences, 08/2020)
      Fingerprints are the one of the most important means in the forensics as a means of identification of the criminals owning to the uniqueness and the distinct features in them. Fingerprint identification is considered as ...
    • Fast single image haze removal method for inhomogeneous environment using variable scattering coefficient 

      Gupta, Rashmi; Khari, Manju; Gupta, Vipul; Verdú, Elena ; Wu, Xing; Herrera-Viedma, Enrique; González-Crespo, Rubén (CMES - Computer Modeling in Engineering and Sciences, 2020)
      The images capture in a bad environment usually loses its fidelity and contrast. As the light rays travel towards its destination they get scattered several times due to the tiny particles of fog and pollutants in the ...
    • Enhanced resource allocation in mobile edge computing using reinforcement learning based MOACO algorithm for IIOT 

      Vimal, S.; Khari, Manju; Dey, Nilanjan; González-Crespo, Rubén ; Harold Robinson, Yesudhas (Computer Communications, 01/02/2020)
      The Mobile networks deploy and offers a multiaspective approach for various resource allocation paradigms and the service based options in the computing segments with its implication in the Industrial Internet of Things ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja