Mostrar el registro sencillo del ítem

dc.contributor.authorArgyros, Ioannis K
dc.contributor.authorMagreñán, Á. Alberto
dc.contributor.authorOrcos, Lara (1)
dc.contributor.authorSarría, Íñigo (1)
dc.date2019-05
dc.date.accessioned2019-07-22T08:00:58Z
dc.date.available2019-07-22T08:00:58Z
dc.identifier.issn2227-7390
dc.identifier.urihttps://reunir.unir.net/handle/123456789/8788
dc.description.abstractUnder the hypotheses that a function and its Frechet derivative satisfy some generalized Newton-Mysovskii conditions, precise estimates on the radii of the convergence balls of Newton's method, and of the uniqueness ball for the solution of the equations, are given for Banach space-valued operators. Some of the existing results are improved with the advantages of larger convergence region, tighter error estimates on the distances involved, and at-least-as-precise information on the location of the solution. These advantages are obtained using the same functions and Lipschitz constants as in earlier studies. Numerical examples are used to test the theoretical results.es_ES
dc.language.isoenges_ES
dc.publisherMathematicses_ES
dc.relation.ispartofseries;vol. 7, nº 5
dc.relation.urihttps://www.mdpi.com/2227-7390/7/5/463es_ES
dc.rightsopenAccesses_ES
dc.subjectNewton's methodes_ES
dc.subjectlocal convergencees_ES
dc.subjectNewton-Mysovskii conditionses_ES
dc.subjectBanach spacees_ES
dc.subjectJCRes_ES
dc.subjectScopuses_ES
dc.titleUnified local convergence for newton's method and uniqueness of the solution of equations under generalized conditions in a Banach spacees_ES
dc.typeArticulo Revista Indexadaes_ES
reunir.tag~ARIes_ES
dc.identifier.doihttps://doi.org/10.3390/math7050463


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem