• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem

    Identifying Students at Risk of Failing a Subject by Using Learning Analytics for Subsequent Customised Tutoring

    Autor: 
    Simanca Herrera, Fredys Alberto
    ;
    González-Crespo, Rubén (1)
    ;
    Rodríguez Baena, Luis (1)
    ;
    Burgos, Daniel (1)
    Fecha: 
    28/01/2019
    Palabra clave: 
    learning analytics; customised tutoring; learning adaptation; virtual classroom; Scopus; JCR
    Tipo de Ítem: 
    Articulo Revista Indexada
    URI: 
    https://reunir.unir.net/handle/123456789/8069
    DOI: 
    http://dx.doi.org/10.3390/app9030448
    Dirección web: 
    https://www.mdpi.com/2076-3417/9/3/448
    Open Access
    Resumen:
    Learning analytics (LA) has become a key area of study in educology, where it could assist in customising teaching and learning. Accordingly, it is precisely this data analysis technique that is used in a sensor—AnalyTIC—designed to identify students who are at risk of failing a course, and to prompt subsequent tutoring. This instrument provides the teacher and the student with the necessary information to evaluate academic performance by using a risk assessment matrix; the teacher can then customise any tutoring for a student having problems, as well as adapt the course contents. The sensor was validated in a study involving 39 students in the first term of the Environmental Engineering program at the Cooperative University of Colombia. Participants were all enrolled in an Algorithms course. Our findings led us to assert that it is vital to identify struggling students so that teachers can take corrective measures. The sensor was initially created based on the theoretical structure of the processes and/or phases of LA. A virtual classroom was built after these phases were identified, and the tool for applying the phases was then developed. After the tool was validated, it was established that students’ educational experiences are more dynamic when teachers have sufficient information for decision-making, and that tutoring and content adaptation boost the students’ academic performance.
    Mostrar el registro completo del ítem
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • Artículos Científicos WOS y SCOPUS

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    Vistas
    0
    0
    0
    0
    0
    0
    0
    44
    85
    34
    22
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • A Solution to Manage the Full Life Cycle of Learning Analytics in a Learning Management System: AnalyTIC 

      Simanca Herrera, Fredys Alberto; González-Crespo, Rubén (1); Rodríguez Baena, Luis (1); Burgos, Daniel (1) (Revista Iberoamericana de Tecnologias del Aprendizaje, 11/11/2019)
      Learning Analytics (LA) has a significant impact in learning and teaching processes. These processes can be improved using the available data retrieved from students' activity inside the virtual classrooms of a learning ...
    • Automation of the tutoring process in online environments through the analitycs of learning 

      Simanca Herrera, Fredys Alberto; Burgos, Daniel (1); González-Crespo, Rubén (1); Rodríguez Baena, Luis (1) (Iberian Conference on Information Systems and Technologies, CISTI, 2018)
      This article presents the preliminary results of an investigation project about new classroom technologies in online learning, whose main objective is the design of a new technological tool in enviroment online, through ...
    • Personalized tutoring model through the application of Learning Analytics phases 

      Simanca Herrera, Fredys Alberto; González-Crespo, Rubén (1); Rodríguez Baena, Luis (1); Burgos, Daniel (1) (IEEE Latin America Transactions, 01/2020)
      Learning Analytics (LA) have a significant impact in learning and teaching processes. These can be improved using the available data retrieved from the students' activity inside the virtual classrooms of a LMS. This process ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioAutorización TFG-M

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja