• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem

    Automated playtesting in collectible card algorithms: A case study in hearthstone

    Autor: 
    García-Sánchez, Pablo
    ;
    Tonda, Alberto
    ;
    Squillero, Giovanni
    ;
    Merelo, Juan Julián
    ;
    Mora, Antonio M
    Fecha: 
    08/2018
    Palabra clave: 
    genetic algorithm; hearthstone; collectible card games; artificial intelligence; Scopus; JCR
    Tipo de Ítem: 
    Articulo Revista Indexada
    URI: 
    https://reunir.unir.net/handle/123456789/6729
    Dirección web: 
    https://www.sciencedirect.com/science/article/pii/S0950705118301953
    Resumen:
    Collectible card games have been among the most popular and profitable products of the entertainment industry since the early days of Magic: The GatheringTM in the nineties. Digital versions have also appeared, with HearthStone: Heroes of WarCraftTM being one of the most popular. In Hearthstone, every player can play as a hero, from a set of nine, and build his/her deck before the game from a big pool of available cards, including both neutral and hero-specific cards. This kind of games offers several challenges for researchers in artificial intelligence since they involve hidden information, unpredictable behaviour, and a large and rugged search space. Besides, an important part of player engagement in such games is a periodical input of new cards in the system, which mainly opens the door to new strategies for the players. Playtesting is the method used to check the new card sets for possible design flaws, and it is usually performed manually or via exhaustive search; in the case of Hearthstone, such test plays must take into account the chosen hero, with its specific kind of cards. In this paper, we present a novel idea to improve and accelerate the playtesting process, systematically exploring the space of possible decks using an Evolutionary Algorithm (EA). This EA creates HearthStone decks which are then played by an AI versus established human-designed decks. Since the space of possible combinations that are play-tested is huge, search through the space of possible decks has been shortened via a new heuristic mutation operator, which is based on the behaviour of human players modifying their decks. Results show the viability of our method for exploring the space of possible decks and automating the play-testing phase of game design. The resulting decks, that have been examined for balancedness by an expert player, outperform human-made ones when played by the AI; the introduction of the new heuristic operator helps to improve the obtained solutions, and basing the study on the whole set of heroes shows its validity through the whole range of decks.
    Mostrar el registro completo del ítem
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • Artículos Científicos WOS y SCOPUS

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    Vistas
    0
    0
    0
    0
    0
    0
    23
    37
    43
    27
    45
    34
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Evolving a TORCS Modular Fuzzy Driver Using Genetic Algorithms 

      Salem, Mohammed; Mora, Antonio M ; Merelo, Juan Julián; García-Sánchez, Pablo (Lecture Notes in Computer Science, 2018)
      This work presents an evolutionary approach to optimize the parameters of a Fuzzy-based autonomous driver for the open simulated car racing game (TORCS). Using evolutionary algorithms, we intend to optimize a modular fuzzy ...
    • Applying genetic algorithms for the improvement of an autonomous fuzzy driver for simulated car racing 

      Salem, Mohammed; Mora, Antonio M ; Merelo, Juan Julián; García-Sánchez, Pablo (Communications in Computer and Information Science, 2018)
      Games offer a suitable testbed where new methodologies and algorithms can be tested in a near-real life environment. For example, in a car driving game, using transfer learning or other techniques results can be generalized ...
    • Living-UGR: Una aventura gráca geolocalizada para difundir el patrimonio de la Universidad de Granada 

      Medina Medina, Nuria; Mora, Antonio M; López-Arcos, Rafael; García-Sánchez, Pablo; Gutiérrez, Francisco Luis; Paderewski-Rodríguez, Patricia; Padilla-Zea, Natalia (CEUR Workshop Proceedings, 06/2016)
      El presente art´ıculo describe una aplicaci´on para dispositivos m´oviles desarrollada en el marco de un proyecto de investigaci´on cuyo objetivo es fomentar las visitas al patrimonio, tanto cultural como acad´emico y ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioAutorización TFG-M

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja