• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem

    Secant-like methods for solving nonlinear models with applications to chemistry

    Autor: 
    Magreñán, Á. Alberto
    ;
    Argyros, Ioannis K
    ;
    Orcos, Lara
    Fecha: 
    2017
    Palabra clave: 
    secant method; banach space; majorizing sequence; divided difference; Frechet derivative; consistent approximation; Scopus
    Revista / editorial: 
    Journal of Mathematical Chemistry
    Tipo de Ítem: 
    Articulo Revista Indexada
    URI: 
    https://reunir.unir.net/handle/123456789/6324
    DOI: 
    https://doi.org/10.1007/s10910-017-0824-y
    Dirección web: 
    https://link.springer.com/article/10.1007/s10910-017-0824-y#citeas
    Resumen:
    We present a local as well a semilocal convergence analysis of secant-like methods under g eneral conditions in order to approximate a locally unique solution of a nonlinear equation in a Banach space setting. The new conditions are more flexible than in earlier studies. This way we expand the applicability of these methods, since the new convergence conditions are weaker. Moreover, these advantages are obtained under the same conditions as in earlier studies. Numerical examples are also provided in this study, where our results compare favorably to earlier ones.
    Mostrar el registro completo del ítem
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • Artículos Científicos WOS y SCOPUS

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    23
    82
    60
    20
    35
    41
    80
    71
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Different methods for solving STEM problems 

      Argyros, Ioannis K; Magreñán, Á. Alberto; Orcos, Lara ; Sarría, Íñigo ; Sicilia, Juan Antonio (Journal of Mathematical Chemistry, 05/2019)
      We first present a local convergence analysis for some families of fourth and six order methods in order to approximate a locally unique solution of a nonlinear equation in a Banach space setting. Earlier studies have used ...
    • Unified local convergence for newton's method and uniqueness of the solution of equations under generalized conditions in a Banach space 

      Argyros, Ioannis K; Magreñán, Á. Alberto; Orcos, Lara ; Sarría, Íñigo (Mathematics, 05/2019)
      Under the hypotheses that a function and its Frechet derivative satisfy some generalized Newton-Mysovskii conditions, precise estimates on the radii of the convergence balls of Newton's method, and of the uniqueness ball ...
    • Weaker conditions for inexact mutitpoint Newton-like methods 

      Argyros, Ioannis K; Magreñán, Á. Alberto; Moreno-Mediavilla, Daniel ; Orcos, Lara ; Sicilia, Juan Antonio (Journal of Mathematical Chemistry, 01/2020)
      In this paper we study the problem of analyzing the convergence both local and semilocal of inexact Newton-like methods for approximating the solution of an equation in which there exists nondifferentiability. We will ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja