Mostrar el registro sencillo del ítem

dc.contributor.authorMagreñán, Á. Alberto
dc.contributor.authorArgyros, Ioannis K
dc.contributor.authorOrcos, Lara
dc.date2017
dc.date.accessioned2018-03-07T16:10:19Z
dc.date.available2018-03-07T16:10:19Z
dc.identifier.issn0259-9791
dc.identifier.urihttps://reunir.unir.net/handle/123456789/6324
dc.description.abstractWe present a local as well a semilocal convergence analysis of secant-like methods under g eneral conditions in order to approximate a locally unique solution of a nonlinear equation in a Banach space setting. The new conditions are more flexible than in earlier studies. This way we expand the applicability of these methods, since the new convergence conditions are weaker. Moreover, these advantages are obtained under the same conditions as in earlier studies. Numerical examples are also provided in this study, where our results compare favorably to earlier ones.es_ES
dc.language.isoenges_ES
dc.publisherJournal of Mathematical Chemistryes_ES
dc.relation.urihttps://link.springer.com/article/10.1007/s10910-017-0824-y#citeases_ES
dc.rightsrestrictedAccesses_ES
dc.subjectsecant methodes_ES
dc.subjectbanach spacees_ES
dc.subjectmajorizing sequencees_ES
dc.subjectdivided differencees_ES
dc.subjectFrechet derivativees_ES
dc.subjectconsistent approximationes_ES
dc.subjectScopuses_ES
dc.titleSecant-like methods for solving nonlinear models with applications to chemistryes_ES
dc.typeArticulo Revista Indexadaes_ES
reunir.tag~ARIes_ES
dc.identifier.doihttps://doi.org/10.1007/s10910-017-0824-y


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem