• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem

    Local Convergence of the Gauss-Newton Method for Infective-Overdetermined Systems

    Autor: 
    Amat, Sergio
    ;
    Argyros, Ioannis K
    ;
    Magreñán, Á. Alberto
    Fecha: 
    09/2014
    Palabra clave: 
    the Gauss-Newton method; Hilbert spaces; majorant condition; local convergence; radius of convergence; injective-overdetermined systems; JCR; Scopus
    Revista / editorial: 
    Journal of the Korean Mathematical Society
    Tipo de Ítem: 
    Articulo Revista Indexada
    URI: 
    https://reunir.unir.net/handle/123456789/5609
    DOI: 
    http://dx.doi.org/10.4134/JKMS.2014.51.5.955
    Dirección web: 
    http://koreascience.or.kr/article/ArticleFullRecord.jsp?cn=DBSHBB_2014_v51n5_955
    Open Access
    Resumen:
    We present, under a weak majorant condition, a local convergence analysis for the Gauss-Newton method for injective-overdetermined systems of equations in a Hilbert space setting. Our results provide under the same information a larger radius of convergence and tighter error estimates on the distances involved than in earlier studies such us [10, 11, 13, 14, 18]. Special cases and numerical examples are also included in this study.
    Mostrar el registro completo del ítem
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • Artículos Científicos WOS y SCOPUS

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    45
    100
    45
    17
    34
    34
    58
    70
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Local convergence and the dynamics of a two-point four parameter Jarratt-like method under weak conditions 

      Amat, Sergio ; Argyros, Ioannis K; Busquier, Sonia; Magreñán, Á. Alberto (Numerical Algorithms, 02/2017)
      We present a local convergence analysis of a two-point four parameter Jarratt-like method of high convergence order in order to approximate a locally unique solution of a nonlinear equation. In contrast to earlier studies ...
    • Local and Semi-local convergence for Chebyshev two point like methods with applications in different fields 

      Argyros, Christopher I.; Argyros, Michael I; Argyros, Ioannis K; Magreñán, Á. Alberto; Sarría, Íñigo (Journal of Computational and Applied Mathematics, 2023)
      The convergence is developed for a large class of Chebyshev-two point-like methods for solving Banach space valued equations. Both the local as well as the semi-local convergence is provided for these methods under general ...
    • An efficient optimal family of sixteenth order methods for nonlinear models 

      Behl, Ramandeep; Amat, Sergio; Magreñán, Á. Alberto ; Motsa, S S (Journal of Computational and Applied Mathematics, 2018)
      The principle aim of this manuscript is to propose a general scheme that can be applied to any optimal iteration function of order eight whose first substep employ Newton’s method to further develop new interesting optimal ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja