Mostrar el registro sencillo del ítem
Local Convergence of the Gauss-Newton Method for Infective-Overdetermined Systems
dc.contributor.author | Amat, Sergio | |
dc.contributor.author | Argyros, Ioannis K | |
dc.contributor.author | Magreñán, Á. Alberto | |
dc.date | 2014-09 | |
dc.date.accessioned | 2017-09-28T21:09:26Z | |
dc.date.available | 2017-09-28T21:09:26Z | |
dc.identifier.issn | 2234-3008 | |
dc.identifier.uri | https://reunir.unir.net/handle/123456789/5609 | |
dc.description.abstract | We present, under a weak majorant condition, a local convergence analysis for the Gauss-Newton method for injective-overdetermined systems of equations in a Hilbert space setting. Our results provide under the same information a larger radius of convergence and tighter error estimates on the distances involved than in earlier studies such us [10, 11, 13, 14, 18]. Special cases and numerical examples are also included in this study. | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | Journal of the Korean Mathematical Society | es_ES |
dc.relation.ispartofseries | ;vol. 51, nº 5 | |
dc.relation.uri | http://koreascience.or.kr/article/ArticleFullRecord.jsp?cn=DBSHBB_2014_v51n5_955 | es_ES |
dc.rights | openAccess | es_ES |
dc.subject | the Gauss-Newton method | es_ES |
dc.subject | Hilbert spaces | es_ES |
dc.subject | majorant condition | es_ES |
dc.subject | local convergence | es_ES |
dc.subject | radius of convergence | es_ES |
dc.subject | injective-overdetermined systems | es_ES |
dc.subject | JCR | es_ES |
dc.subject | Scopus | es_ES |
dc.title | Local Convergence of the Gauss-Newton Method for Infective-Overdetermined Systems | es_ES |
dc.type | Articulo Revista Indexada | es_ES |
reunir.tag | ~ARI | es_ES |
dc.identifier.doi | http://dx.doi.org/10.4134/JKMS.2014.51.5.955 |
Ficheros en el ítem
Ficheros | Tamaño | Formato | Ver |
---|---|---|---|
No hay ficheros asociados a este ítem. |