Mostrar el registro sencillo del ítem

dc.contributor.authorAmat, Sergio
dc.contributor.authorArgyros, Ioannis K
dc.contributor.authorMagreñán, Á. Alberto
dc.date2014-09
dc.date.accessioned2017-09-28T21:09:26Z
dc.date.available2017-09-28T21:09:26Z
dc.identifier.issn2234-3008
dc.identifier.urihttps://reunir.unir.net/handle/123456789/5609
dc.description.abstractWe present, under a weak majorant condition, a local convergence analysis for the Gauss-Newton method for injective-overdetermined systems of equations in a Hilbert space setting. Our results provide under the same information a larger radius of convergence and tighter error estimates on the distances involved than in earlier studies such us [10, 11, 13, 14, 18]. Special cases and numerical examples are also included in this study.es_ES
dc.language.isoenges_ES
dc.publisherJournal of the Korean Mathematical Societyes_ES
dc.relation.ispartofseries;vol. 51, nº 5
dc.relation.urihttp://koreascience.or.kr/article/ArticleFullRecord.jsp?cn=DBSHBB_2014_v51n5_955es_ES
dc.rightsopenAccesses_ES
dc.subjectthe Gauss-Newton methodes_ES
dc.subjectHilbert spaceses_ES
dc.subjectmajorant conditiones_ES
dc.subjectlocal convergencees_ES
dc.subjectradius of convergencees_ES
dc.subjectinjective-overdetermined systemses_ES
dc.subjectJCRes_ES
dc.subjectScopuses_ES
dc.titleLocal Convergence of the Gauss-Newton Method for Infective-Overdetermined Systemses_ES
dc.typeArticulo Revista Indexadaes_ES
reunir.tag~ARIes_ES
dc.identifier.doihttp://dx.doi.org/10.4134/JKMS.2014.51.5.955


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem