• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem

    Adaptive contents for interactive TV guided by machine learning based on predictive sentiment analysis of data

    Autor: 
    Mondragón, Victor M
    ;
    García-Díaz, Vicente
    ;
    Porcel, Carlos
    ;
    González-Crespo, Rubén (1)
    Fecha: 
    03/2017
    Palabra clave: 
    sentiment analysis; adaptive content; television interactive; machine learning; modeling predictive; real time; plebiscite; JCR; Scopus
    Tipo de Ítem: 
    Articulo Revista Indexada
    URI: 
    https://reunir.unir.net/handle/123456789/5377
    DOI: 
    https://doi.org/10.1007/s00500-017-2530-x
    Dirección web: 
    https://link.springer.com/article/10.1007/s00500-017-2530-x
    Resumen:
    This paper describes a new proposal for interactive television which is an answer to a continuous change in the traditional television as consequence of the inclusion and evolution of the digital social networks, the Internet and the different elements of the digital age. The digital evolution has encourage the interaction of the viewers with the content and also increases the need to evolved the content, the methods, formats, tools and architectures to adapt the content to the sentiment expressed by the viewer while watching a show. The present paper contains the following objectives: The first objective is to create guidelines that can be used to construct adaptive contents for television, which can be modified in real time by the production team or the director of the show. The second objective is to develop applications that allows to obtain, collect and analyze the sentiment inside of the expressions, data or opinions of the viewers, who interact with the show through social networks or communication channels as: Facebook, Twitter, Instagram and WhatsApp. The third objective is to develop a machine learning to predict the preferences of the viewers, generating options and changes in the sequence of the scenes of the TV show that will be broadcasted in real time. All the objectives explained above are applied to two TV shows which are different in the content but share the live condition. During the broadcasting of the show, the guidelines are applied, the results are obtained, analyzed and the final result is more participation of the viewers and a better perception of the content. As a result of the research and the application in real life of the proposal, this paper contributes with an alternative solution for interactive TV where a viewer can interact with the show and the production team can modify the content according to what the viewers express and expect to watch based on an analysis of sentiment of data using a machine learning.
    Mostrar el registro completo del ítem
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • Artículos Científicos WOS y SCOPUS

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    Vistas
    0
    0
    0
    0
    0
    0
    58
    164
    59
    41
    18
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Usage of machine learning for strategic decision making at Higher Educational Institutions 

      Nieto, Yuri; García-Díaz, Vicente; Montenegro, Carlos Enrique; González, Claudio Camilo; González-Crespo, Rubén (1) (IEEE Access, 2019)
      Decisions made at the strategic level of Higher Educational Institutions (HEIs) affect policies, strategies, and actions that the institutions make as a whole. Decision's structures at HEIs are depicted in this paper and ...
    • Supporting academic decision making at higher educational institutions using machine learning-based algorithms 

      Nieto, Yuri; García-Díaz, Vicente; Montenegro, Carlos Enrique; González-Crespo, Rubén (1) (Soft Computing, 2018)
      Decisions made by deans and university managers greatly impact the entire academic community as well as society as a whole. In this paper, we present survey results on which academic decisions they concern and the variables ...
    • JGraphs: A Toolset to Work with Monte-Carlo Tree Search-Based Algorithms 

      García-Díaz, Vicente; Núñez-Valdez, Edward Rolando; González García, Cristian; Gómez Gómez, Alberto; González-Crespo, Rubén (1) (International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 12/2020)
      Monte-Carlo methods are the basis for solving many computational problems using repeated random sampling in scenarios that may have a deterministic but very complex solution from a computational point of view. In recent ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioAutorización TFG-M

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja