dc.contributor.author Argyros, Ioannis K dc.contributor.author Magreñán, Á. Alberto (1) dc.contributor.author Orcos, Lara (1) dc.contributor.author Sicilia, Juan Antonio (1) dc.date 2017-08 dc.date.accessioned 2017-08-07T13:53:49Z dc.date.available 2017-08-07T13:53:49Z dc.identifier.issn 1572-8897 dc.identifier.uri https://reunir.unir.net/handle/123456789/5329 dc.description.abstract We present a local convergence analysis for a relaxed two-step Newton-like method. We use this method to approximate a solution of a nonlinear equation in a Banach space setting. Hypotheses on the first Fr,chet derivative and on the center divided-difference of order one are used. In earlier studies such as Amat et al. (Numer Linear Algebra Appl 17:639-653, 2010, Appl Math Lett 25(12):2209-2217, 2012, Appl Math Comput 219(24):11341-11347, 2013, Appl Math Comput 219(15):7954-7963, 2013, Reducing Chaos and bifurcations in Newton-type methods. Abstract and applied analysis. Hindawi Publishing Corporation, Cairo, 2013) these methods are analyzed under hypotheses up to the second Fr,chet derivative and divided differences of order one. Numerical examples are also provided in this work. es_ES dc.language.iso eng es_ES dc.publisher Journal of Mathematical Chemistry es_ES dc.relation.ispartofseries ;vol. 55, nº 7 dc.relation.uri https://link.springer.com/article/10.1007/s10910-016-0722-8 es_ES dc.rights closedAccess es_ES dc.subject two-step Newton's method es_ES dc.subject banach space es_ES dc.subject Frechet derivative es_ES dc.subject divided difference of first order es_ES dc.subject local/semilocal convergence es_ES dc.subject JCR es_ES dc.subject Scopus es_ES dc.title Local convergence of a relaxed two-step Newton like method with applications es_ES dc.type Articulo Revista Indexada es_ES reunir.tag ~ARI es_ES dc.identifier.doi https://doi.org/10.1007/s10910-016-0722-8
﻿

## Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.