Mostrar el registro sencillo del ítem

dc.contributor.authorArgyros, Ioannis K
dc.contributor.authorMagreñán, Á. Alberto
dc.contributor.authorOrcos, Lara
dc.contributor.authorSicilia, Juan Antonio
dc.date2017-08
dc.date.accessioned2017-08-07T13:53:49Z
dc.date.available2017-08-07T13:53:49Z
dc.identifier.issn1572-8897
dc.identifier.urihttps://reunir.unir.net/handle/123456789/5329
dc.description.abstractWe present a local convergence analysis for a relaxed two-step Newton-like method. We use this method to approximate a solution of a nonlinear equation in a Banach space setting. Hypotheses on the first Fr,chet derivative and on the center divided-difference of order one are used. In earlier studies such as Amat et al. (Numer Linear Algebra Appl 17:639-653, 2010, Appl Math Lett 25(12):2209-2217, 2012, Appl Math Comput 219(24):11341-11347, 2013, Appl Math Comput 219(15):7954-7963, 2013, Reducing Chaos and bifurcations in Newton-type methods. Abstract and applied analysis. Hindawi Publishing Corporation, Cairo, 2013) these methods are analyzed under hypotheses up to the second Fr,chet derivative and divided differences of order one. Numerical examples are also provided in this work.es_ES
dc.language.isoenges_ES
dc.publisherJournal of Mathematical Chemistryes_ES
dc.relation.ispartofseries;vol. 55, nº 7
dc.relation.urihttps://link.springer.com/article/10.1007/s10910-016-0722-8es_ES
dc.rightsclosedAccesses_ES
dc.subjecttwo-step Newton's methodes_ES
dc.subjectbanach spacees_ES
dc.subjectFrechet derivativees_ES
dc.subjectdivided difference of first orderes_ES
dc.subjectlocal/semilocal convergencees_ES
dc.subjectJCRes_ES
dc.subjectScopuses_ES
dc.titleLocal convergence of a relaxed two-step Newton like method with applicationses_ES
dc.typeArticulo Revista Indexadaes_ES
reunir.tag~ARIes_ES
dc.identifier.doihttps://doi.org/10.1007/s10910-016-0722-8


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem