Mostrar el registro sencillo del ítem
New improved convergence analysis for Newton-like methods with applications
dc.contributor.author | Magreñán, Á. Alberto | |
dc.contributor.author | Argyros, Ioannis K | |
dc.contributor.author | Sicilia, Juan Antonio | |
dc.date | 2017-08 | |
dc.date.accessioned | 2017-08-07T13:42:58Z | |
dc.date.available | 2017-08-07T13:42:58Z | |
dc.identifier.issn | 1572-8897 | |
dc.identifier.uri | https://reunir.unir.net/handle/123456789/5328 | |
dc.description.abstract | We present a new semilocal convergence analysis for Newton-like methods using restricted convergence domains in a Banach space setting. The main goal of this study is to expand the applicability of these methods in cases not covered in earlier studies. The advantages of our approach include, under the same computational cost as previous studies, a more precise convergence analysis under the same computational cost on the Lipschitz constants involved. Numerical studies including a chemical application are also provided in this study. | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | Journal of Mathematical Chemistry | es_ES |
dc.relation.ispartofseries | ;vol. 55, nº 7 | |
dc.relation.uri | https://link.springer.com/article/10.1007%2Fs10910-016-0727-3 | es_ES |
dc.rights | closedAccess | es_ES |
dc.subject | Newton-type method | es_ES |
dc.subject | banach space | es_ES |
dc.subject | majorizing sequence | es_ES |
dc.subject | restricted domains | es_ES |
dc.subject | local convergence | es_ES |
dc.subject | semilocal convergence | es_ES |
dc.subject | JCR | es_ES |
dc.subject | Scopus | es_ES |
dc.title | New improved convergence analysis for Newton-like methods with applications | es_ES |
dc.type | Articulo Revista Indexada | es_ES |
reunir.tag | ~ARI | es_ES |
dc.identifier.doi | https://doi.org/10.1007/s10910-016-0727-3 |
Ficheros en el ítem
Ficheros | Tamaño | Formato | Ver |
---|---|---|---|
No hay ficheros asociados a este ítem. |