Mostrar el registro sencillo del ítem

dc.contributor.authorMagreñán, Á. Alberto
dc.contributor.authorArgyros, Ioannis K
dc.contributor.authorSicilia, Juan Antonio
dc.date2017-08
dc.date.accessioned2017-08-07T13:42:58Z
dc.date.available2017-08-07T13:42:58Z
dc.identifier.issn1572-8897
dc.identifier.urihttps://reunir.unir.net/handle/123456789/5328
dc.description.abstractWe present a new semilocal convergence analysis for Newton-like methods using restricted convergence domains in a Banach space setting. The main goal of this study is to expand the applicability of these methods in cases not covered in earlier studies. The advantages of our approach include, under the same computational cost as previous studies, a more precise convergence analysis under the same computational cost on the Lipschitz constants involved. Numerical studies including a chemical application are also provided in this study.es_ES
dc.language.isoenges_ES
dc.publisherJournal of Mathematical Chemistryes_ES
dc.relation.ispartofseries;vol. 55, nº 7
dc.relation.urihttps://link.springer.com/article/10.1007%2Fs10910-016-0727-3es_ES
dc.rightsclosedAccesses_ES
dc.subjectNewton-type methodes_ES
dc.subjectbanach spacees_ES
dc.subjectmajorizing sequencees_ES
dc.subjectrestricted domainses_ES
dc.subjectlocal convergencees_ES
dc.subjectsemilocal convergencees_ES
dc.subjectJCRes_ES
dc.subjectScopuses_ES
dc.titleNew improved convergence analysis for Newton-like methods with applicationses_ES
dc.typeArticulo Revista Indexadaes_ES
reunir.tag~ARIes_ES
dc.identifier.doihttps://doi.org/10.1007/s10910-016-0727-3


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem