Extended convergence results for the Newton–Kantorovich iteration
Autor:
Argyros, Ioannis K
; Magreñán, Á. Alberto
Fecha:
10/2015Palabra clave:
Revista / editorial:
Journal of Computational and Applied MathematicsCitación:
Argyros, I. .K. & Magreñán, A. .A. (2015). Extended convergence results for the Newton–Kantorovich iteration. Journal of computational and Applied Mathematics, 286(1), 54-67Tipo de Ítem:
Articulo Revista IndexadaResumen:
We present new semilocal and local convergence results for the Newton–Kantorovich method. These new results extend the applicability of the Newton–Kantorovich method on approximate zeros by improving the convergence domain and ratio given in earlier studies by Argyros (2003), Cianciaruso (2007), Smale (1986) and Wang (1999). These advantages are also obtained under the same computational cost. Numerical examples where the old sufficient convergence criteria are not satisfied but the new convergence criteria are satisfied are also presented in this study.
Este ítem aparece en la(s) siguiente(s) colección(es)
Estadísticas de uso
Año |
2012 |
2013 |
2014 |
2015 |
2016 |
2017 |
2018 |
2019 |
2020 |
2021 |
2022 |
2023 |
2024 |
Vistas |
0 |
0 |
0 |
0 |
0 |
0 |
32 |
117 |
58 |
29 |
37 |
33 |
72 |
Descargas |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
Ítems relacionados
Mostrando ítems relacionados por Título, autor o materia.
-
Local and Semi-local convergence for Chebyshev two point like methods with applications in different fields
Argyros, Christopher I.; Argyros, Michael I; Argyros, Ioannis K; Magreñán, Á. Alberto; Sarría, Íñigo (Journal of Computational and Applied Mathematics, 2023)The convergence is developed for a large class of Chebyshev-two point-like methods for solving Banach space valued equations. Both the local as well as the semi-local convergence is provided for these methods under general ... -
Local convergence comparison between frozen Kurchatov and Schmidt–Schwetlick–Kurchatov solvers with applications
Moysi, Alejandro; Argyros, Michael I; Argyros, Ioannis K; Magreñán, Á. Alberto ; Sarría, Íñigo ; González Sánchez, Daniel (Journal of Computational and Applied Mathematics, 04/2022)In this work we are going to use the Kurchatov–Schmidt–Schwetlick-like solver (KSSLS) and the Kurchatov-like solver (KLS) to locate a zero, denoted by x∗ of operator F. We define F as F:D⊆B1⟶B2 where B1 and B2 stand for ... -
Ball comparison between frozen Potra and Schmidt-Schwetlick schemes with dynamical analysis
Argyros, Michael I; Argyros, Ioannis K; González, Daniel; Magreñán, Á. Alberto; Moysi, Alejandro; Sarría, Íñigo (Computational and Mathematical Methods, 2021)In this article, we propose a new research related to the convergence of the frozen Potra and Schmidt-Schwetlick schemes when we apply to equations. The purpose of this study is to introduce a comparison between two solutions ...