On the local convergence and the dynamics of Chebyshev–Halley methods with six and eight order of convergence
Autor:
Magreñán, Á. Alberto
; Argyros, Ioannis K
Fecha:
05/2016Palabra clave:
Revista / editorial:
Journal of Computational and Applied MathematicsCitación:
Á. Alberto Magreñán, Ioannis K. Argyros, On the local convergence and the dynamics of Chebyshev–Halley methods with six and eight order of convergence, Journal of Computational and Applied Mathematics, Volume 298, 15 May 2016, Pages 236-251, ISSN 0377-0427Tipo de Ítem:
Articulo Revista IndexadaResumen:
We study the local convergence of Chebyshev–Halley methods with six and eight order of convergence to approximate a locally unique solution of a nonlinear equation. In Sharma (2015) (see Theorem 1, p. 121) the convergence of the method was shown under hypotheses reaching up to the third derivative. The convergence in this study is shown under hypotheses on the first derivative. Hence, the applicability of the method is expanded. The dynamics of these methods are also studied. Finally, numerical examples examining dynamical planes are also provided in this study to solve equations in cases where earlier studies cannot apply.
Este ítem aparece en la(s) siguiente(s) colección(es)
Estadísticas de uso
Año |
2012 |
2013 |
2014 |
2015 |
2016 |
2017 |
2018 |
2019 |
2020 |
2021 |
2022 |
2023 |
2024 |
Vistas |
0 |
0 |
0 |
0 |
0 |
0 |
28 |
137 |
60 |
23 |
28 |
39 |
121 |
Descargas |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
Ítems relacionados
Mostrando ítems relacionados por Título, autor o materia.
-
Local and Semi-local convergence for Chebyshev two point like methods with applications in different fields
Argyros, Christopher I.; Argyros, Michael I; Argyros, Ioannis K; Magreñán, Á. Alberto; Sarría, Íñigo (Journal of Computational and Applied Mathematics, 2023)The convergence is developed for a large class of Chebyshev-two point-like methods for solving Banach space valued equations. Both the local as well as the semi-local convergence is provided for these methods under general ... -
Local convergence comparison between frozen Kurchatov and Schmidt–Schwetlick–Kurchatov solvers with applications
Moysi, Alejandro; Argyros, Michael I; Argyros, Ioannis K; Magreñán, Á. Alberto ; Sarría, Íñigo ; González Sánchez, Daniel (Journal of Computational and Applied Mathematics, 04/2022)In this work we are going to use the Kurchatov–Schmidt–Schwetlick-like solver (KSSLS) and the Kurchatov-like solver (KLS) to locate a zero, denoted by x∗ of operator F. We define F as F:D⊆B1⟶B2 where B1 and B2 stand for ... -
Ball comparison between frozen Potra and Schmidt-Schwetlick schemes with dynamical analysis
Argyros, Michael I; Argyros, Ioannis K; González, Daniel; Magreñán, Á. Alberto; Moysi, Alejandro; Sarría, Íñigo (Computational and Mathematical Methods, 2021)In this article, we propose a new research related to the convergence of the frozen Potra and Schmidt-Schwetlick schemes when we apply to equations. The purpose of this study is to introduce a comparison between two solutions ...