• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem

    On the local convergence and the dynamics of Chebyshev–Halley methods with six and eight order of convergence

    Autor: 
    Magreñán, Á. Alberto
    ;
    Argyros, Ioannis K
    Fecha: 
    05/2016
    Palabra clave: 
    Chebyshev–Halley methods; local convergence; order of convergence; dynamics of a method; JCR; Scopus
    Revista / editorial: 
    Journal of Computational and Applied Mathematics
    Citación: 
    Á. Alberto Magreñán, Ioannis K. Argyros, On the local convergence and the dynamics of Chebyshev–Halley methods with six and eight order of convergence, Journal of Computational and Applied Mathematics, Volume 298, 15 May 2016, Pages 236-251, ISSN 0377-0427
    Tipo de Ítem: 
    Articulo Revista Indexada
    URI: 
    https://reunir.unir.net/handle/123456789/4692
    DOI: 
    https://doi.org/10.1016/j.cam.2015.11.036
    Dirección web: 
    http://www.sciencedirect.com/science/article/pii/S0377042715005907
    Resumen:
    We study the local convergence of Chebyshev–Halley methods with six and eight order of convergence to approximate a locally unique solution of a nonlinear equation. In Sharma (2015) (see Theorem 1, p. 121) the convergence of the method was shown under hypotheses reaching up to the third derivative. The convergence in this study is shown under hypotheses on the first derivative. Hence, the applicability of the method is expanded. The dynamics of these methods are also studied. Finally, numerical examples examining dynamical planes are also provided in this study to solve equations in cases where earlier studies cannot apply.
    Mostrar el registro completo del ítem
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • Artículos Científicos WOS y SCOPUS

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    28
    137
    60
    23
    28
    39
    123
    74
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Local and Semi-local convergence for Chebyshev two point like methods with applications in different fields 

      Argyros, Christopher I.; Argyros, Michael I; Argyros, Ioannis K; Magreñán, Á. Alberto; Sarría, Íñigo (Journal of Computational and Applied Mathematics, 2023)
      The convergence is developed for a large class of Chebyshev-two point-like methods for solving Banach space valued equations. Both the local as well as the semi-local convergence is provided for these methods under general ...
    • Local convergence comparison between frozen Kurchatov and Schmidt–Schwetlick–Kurchatov solvers with applications 

      Moysi, Alejandro; Argyros, Michael I; Argyros, Ioannis K; Magreñán, Á. Alberto ; Sarría, Íñigo ; González Sánchez, Daniel (Journal of Computational and Applied Mathematics, 04/2022)
      In this work we are going to use the Kurchatov–Schmidt–Schwetlick-like solver (KSSLS) and the Kurchatov-like solver (KLS) to locate a zero, denoted by x∗ of operator F. We define F as F:D⊆B1⟶B2 where B1 and B2 stand for ...
    • Ball comparison between frozen Potra and Schmidt-Schwetlick schemes with dynamical analysis 

      Argyros, Michael I; Argyros, Ioannis K; González, Daniel; Magreñán, Á. Alberto; Moysi, Alejandro; Sarría, Íñigo (Computational and Mathematical Methods, 2021)
      In this article, we propose a new research related to the convergence of the frozen Potra and Schmidt-Schwetlick schemes when we apply to equations. The purpose of this study is to introduce a comparison between two solutions ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja