• Mi Re-Unir
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Buscar 
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Buscar
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Buscar

    Buscar

    Mostrar filtros avanzadosOcultar filtros avanzados

    Filtros

    Use filtros para refinar sus resultados.

    Mostrando ítems 11-20 de 24

    • Opciones de clasificación:
    • Relevancia
    • Título Asc
    • Título Desc
    • Fecha Asc
    • Fecha Desc
    • Fecha Publicación Asc
    • Fecha Publicación Desc
    • Resultados por página:
    • 5
    • 10
    • 20
    • 40
    • 60
    • 80
    • 100

    Inexact gauss-newton method for least square problems 

    Argyros, Ioannis K; Magreñán, Á. Alberto (Iterative Methods and Their Dynamics with Applications: A Contemporary Study, 2017)
    In this chapter we are interested in locating a solution x of the nonlinear least squares problem: minG(x) := 1/2 F(x)TF(x), (8.1) where F is Fréchet-differentiable defined on ℝn with values in ℝm, m ≥ n.

    Generalized newton method with applications 

    Argyros, Ioannis K; Magreñán, Á. Alberto (Iterative Methods and Their Dynamics with Applications: A Contemporary Study, 2017)
    In this chapter we are interested in the approximately solving the generalized equation: Find x ∈ H such that 0 ∈ F(x) + T(x). (16.1) where F : H → H is a Fr→chet differentiable function, H is a Hilbert space and T : H ⇉ ...

    Müller’s method 

    Argyros, Ioannis K; Magreñán, Á. Alberto (Iterative Methods and Their Dynamics with Applications: A Contemporary Study, 2017)
    In this chapter we are concerned with approximating a solution of the equation f(x) = 0, (15.1) where f is defined on an open domain or closed domain D on a real space ℝ.

    Directional newton methods and restricted domains 

    Argyros, Ioannis K; Magreñán, Á. Alberto (Iterative Methods and Their Dynamics with Applications: A Contemporary Study, 2017)
    Let F : D ⊂ ℝn → ℝ be a differentiable function. In computer graphics, we often need to compute and display the intersection C = A ⋂ B of two surfaces A and B in ℝ3 [5], [6]. If the two surfaces are explicitly given by A ...

    Newton-secant methods with values in a cone 

    Argyros, Ioannis K; Magreñán, Á. Alberto (Iterative Methods and Their Dynamics with Applications: A Contemporary Study, 2017)
    We study the variational inclusion 0 ∈ F(x) + G(x) + E(x), (17.1) where X, Y are Banach space D ⊂ X is an open set F : D → Y is a smooth operator, G : D → Y is continuous operator, [., .;G] is a divided difference of order ...

    Expanding kantorovich’s theorem for solving generalized equations 

    Argyros, Ioannis K; Magreñán, Á. Alberto (Iterative Methods and Their Dynamics with Applications: A Contemporary Study, 2017)
    In [18], G. S. Silva considered the problem of approximating the solution of the generalized equation F(x) + Q(x) ϶ 0, (22.1) where F : D → H is a Fréchet differentiable function, H is a Hilbert space with inner product ...

    Generalized equations and newton’s and method 

    Argyros, Ioannis K; Magreñán, Á. Alberto (Iterative Methods and Their Dynamics with Applications: A Contemporary Study, 2017)
    In [18], G. S. Silva considered the problem of approximating the solution of the generalized equation F(x)+Q(x) ϶ 0,(11.1) where F : D → H is a Fréchet differentiable function, H is a Hilbert space with inner product ⟨., ...

    Halley’s method 

    Argyros, Ioannis K; Magreñán, Á. Alberto (Iterative Methods and Their Dynamics with Applications: A Contemporary Study, 2017)
    In this chapter we are concerned with the problem of approximating a locally unique solution x* of the nonlinear equation F(x) = 0, where F is twice Fréchet-differentiable operator defined on a nonempty open and convex ...

    Local convergence and basins of attraction of a two-step Newton-like method for equations with solutions of multiplicity greater than one 

    Argyros, Ioannis K; Magreñán, Á. Alberto (Iterative Methods and Their Dynamics with Applications: A Contemporary Study, 2017)
    Let S = ℝ or S = ℂ, D ⊆ S be convex and let F : D → S be a differentiable function. We shall approximate solutions x of the equation F(x) = 0, (5.1) Many problems from Applied Sciences including engineering can be solved ...

    Newton’s method for k-Fréchet differentiable operators 

    Argyros, Ioannis K; Magreñán, Á. Alberto (Iterative Methods and Their Dynamics with Applications: A Contemporary Study, 2017)
    We determine a solution x of the equation F(x) = 0. where X and Y are Banach spaces, D ⊆ X a convex set and F : D → Y is a Fréchet-differentiable operator. In particular, we expand the applicability of the Newton’s method ...
    • 1
    • 2
    • 3

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioAutorización TFG-M

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta comunidadPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso

    afina tu búsqueda

    Autor
    Argyros, Ioannis K (24)
    Magreñán, Á. Alberto (24)Palabra clavecomputer science (24)
    mathematics & statistics (24)
    Scopus(2) (24)
    WOS(2) (22)... ver todoFecha
    2017 (24)






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja