Inexact gauss-newton method for least square problems
Autor:
Argyros, Ioannis K
; Magreñán, Á. Alberto (1)
Fecha:
2017Palabra clave:
Tipo de Ítem:
bookPartDirección web:
https://www.taylorfrancis.com/books/e/9781315153469Resumen:
In this chapter we are interested in locating a solution x of the nonlinear least squares problem: minG(x) := 1/2 F(x)TF(x), (8.1) where F is Fréchet-differentiable defined on ℝn with values in ℝm, m ≥ n.
Descripción:
Capítulo del libro "Iterative Methods and Their Dynamics with Applications"
Este ítem aparece en la(s) siguiente(s) colección(es)
Estadísticas de uso
Año |
2012 |
2013 |
2014 |
2015 |
2016 |
2017 |
2018 |
2019 |
2020 |
2021 |
2022 |
2023 |
Vistas |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
28 |
29 |
30 |
1 |
Descargas |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
0 |
Ítems relacionados
Mostrando ítems relacionados por Título, autor o materia.
-
Local convergence comparison between frozen Kurchatov and Schmidt–Schwetlick–Kurchatov solvers with applications
Moysi, Alejandro; Argyros, Michael I; Argyros, Ioannis K; Magreñán, Á. Alberto (1); Sarría, Íñigo (1); González Sánchez, Daniel (Journal of Computational and Applied Mathematics, 04/2022)In this work we are going to use the Kurchatov–Schmidt–Schwetlick-like solver (KSSLS) and the Kurchatov-like solver (KLS) to locate a zero, denoted by x∗ of operator F. We define F as F:D⊆B1⟶B2 where B1 and B2 stand for ... -
Ball comparison between frozen Potra and Schmidt-Schwetlick schemes with dynamical analysis
Argyros, Michael; Argyros, Ioannis K.; González, Daniel; Magreñán, Á. Alberto; Moysi, Alejandro; Sarría, Íñigo (1) (Computational and Mathematical Methods, 2021)In this article, we propose a new research related to the convergence of the frozen Potra and Schmidt-Schwetlick schemes when we apply to equations. The purpose of this study is to introduce a comparison between two solutions ... -
Extending the domain of starting points for Newton's method under conditions on the second derivative
Argyros, Ioannis K; Ezquerro, J A; Hernández-Verón, M A; Magreñán, Á. Alberto (1) (Journal of Computational and Applied Mathematics, 10/2018)In this paper, we propose a center Lipschitz condition for the second Frechet derivative together with the use of restricted domains in order to improve the domain of starting points for Newton's method. In addition, we ...