Buscar
Mostrando ítems 11-20 de 24
Inexact gauss-newton method for least square problems
(Iterative Methods and Their Dynamics with Applications: A Contemporary Study, 2017)
In this chapter we are interested in locating a solution x of the nonlinear least squares problem: minG(x) := 1/2 F(x)TF(x), (8.1) where F is Fréchet-differentiable defined on ℝn with values in ℝm, m ≥ n.
Generalized newton method with applications
(Iterative Methods and Their Dynamics with Applications: A Contemporary Study, 2017)
In this chapter we are interested in the approximately solving the generalized equation: Find x ∈ H such that 0 ∈ F(x) + T(x). (16.1) where F : H → H is a Fr→chet differentiable function, H is a Hilbert space and T : H ⇉ ...
Müller’s method
(Iterative Methods and Their Dynamics with Applications: A Contemporary Study, 2017)
In this chapter we are concerned with approximating a solution of the equation f(x) = 0, (15.1) where f is defined on an open domain or closed domain D on a real space ℝ.
Directional newton methods and restricted domains
(Iterative Methods and Their Dynamics with Applications: A Contemporary Study, 2017)
Let F : D ⊂ ℝn → ℝ be a differentiable function. In computer graphics, we often need to compute and display the intersection C = A ⋂ B of two surfaces A and B in ℝ3 [5], [6]. If the two surfaces are explicitly given by A ...
Newton-secant methods with values in a cone
(Iterative Methods and Their Dynamics with Applications: A Contemporary Study, 2017)
We study the variational inclusion 0 ∈ F(x) + G(x) + E(x), (17.1) where X, Y are Banach space D ⊂ X is an open set F : D → Y is a smooth operator, G : D → Y is continuous operator, [., .;G] is a divided difference of order ...
Expanding kantorovich’s theorem for solving generalized equations
(Iterative Methods and Their Dynamics with Applications: A Contemporary Study, 2017)
In [18], G. S. Silva considered the problem of approximating the solution of the generalized equation F(x) + Q(x) ϶ 0, (22.1) where F : D → H is a Fréchet differentiable function, H is a Hilbert space with inner product ...
Generalized equations and newton’s and method
(Iterative Methods and Their Dynamics with Applications: A Contemporary Study, 2017)
In [18], G. S. Silva considered the problem of approximating the solution of the generalized equation F(x)+Q(x) ϶ 0,(11.1) where F : D → H is a Fréchet differentiable function, H is a Hilbert space with inner product ⟨., ...
Halley’s method
(Iterative Methods and Their Dynamics with Applications: A Contemporary Study, 2017)
In this chapter we are concerned with the problem of approximating a locally unique solution x* of the nonlinear equation F(x) = 0, where F is twice Fréchet-differentiable operator defined on a nonempty open and convex ...
Local convergence and basins of attraction of a two-step Newton-like method for equations with solutions of multiplicity greater than one
(Iterative Methods and Their Dynamics with Applications: A Contemporary Study, 2017)
Let S = ℝ or S = ℂ, D ⊆ S be convex and let F : D → S be a differentiable function. We shall approximate solutions x of the equation F(x) = 0, (5.1) Many problems from Applied Sciences including engineering can be solved ...
Newton’s method for k-Fréchet differentiable operators
(Iterative Methods and Their Dynamics with Applications: A Contemporary Study, 2017)
We determine a solution x of the equation F(x) = 0. where X and Y are Banach spaces, D ⊆ X a convex set and F : D → Y is a Fréchet-differentiable operator. In particular, we expand the applicability of the Newton’s method ...