• Mi Re-Unir
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Buscar 
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Buscar
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Buscar

    Buscar

    Mostrar filtros avanzadosOcultar filtros avanzados

    Filtros

    Use filtros para refinar sus resultados.

    Mostrando ítems 1-10 de 107

    • Opciones de clasificación:
    • Relevancia
    • Título Asc
    • Título Desc
    • Fecha Asc
    • Fecha Desc
    • Fecha Publicación Asc
    • Fecha Publicación Desc
    • Resultados por página:
    • 5
    • 10
    • 20
    • 40
    • 60
    • 80
    • 100

    Expanding the convergence domain for Chun-Stanica-Neta family of third order methods in banach spaces 

    Argyros, Ioannis K; Santhosh, George; Magreñán, Á. Alberto (Journal of the Korean Mathematical Society, 2015-01)
    We present a semilocal convergence analysis of a third order method for approximating a locally unique solution of an equation in a Banach space setting. Recently, this method was studied by Chun, Stanica. and Neta. These ...

    Expanding the aplicability of secant method with applications 

    Magreñán, Á. Alberto ; Argyros, Ioannis K (Bulletin of the Korean Mathematical Society, 2015-05)
    We present new sufficient convergence criteria for the convergence of the secant-method to a locally unique solution of a nonlinear equation in a Banach space. Our idea uses Lipschitz and center Lipschitz instead of just ...

    A unified convergence analysis for secant-type methods 

    Argyros, Ioannis K; Magreñán, Á. Alberto (Journal of the Korean Mathematical Society, 2014-11)
    We present a unified local and semilocal convergence analysis for secant-type methods in order to approximate a locally unique solution of a nonlinear equation in a Banach space setting. Our analysis includes he computation ...

    New semilocal and local convergence analysis for the Secant method 

    Magreñán, Á. Alberto ; Argyros, Ioannis K (Applied Mathematics and Computation, 2015-06)
    We present a new convergence analysis, for the Secant method in order to approximate a locally unique solution of a nonlinear equation in a Banach space. Our idea uses Lipschitz and center-Lipschitz instead of just Lipschitz ...

    Relaxed secant-type methods 

    Argyros, Ioannis K; Magreñán, Á. Alberto (Nonlinear Studies, 2014-06)
    We present a unified local and semilocal convergence analysis for secant-type methods in order to approximate a locally unique solution of a nonlinear equation in a Banach space setting. Our analysis includes the computation ...

    Ball convergence of a sixth-order Newton-like method based on means under weak conditions 

    Magreñán, Á. Alberto ; Argyros, Ioannis K; Rainer, J Javier ; Sicilia, Juan Antonio (Journal of Mathematical Chemistry, 2018-08)
    We study the local convergence of a Newton-like method of convergence order six to approximate a locally unique solution of a nonlinear equation. Earlier studies show convergence under hypotheses on the seventh derivative ...

    Extending the domain of starting points for Newton's method under conditions on the second derivative 

    Argyros, Ioannis K; Ezquerro, J A; Hernández-Verón, M A; Magreñán, Á. Alberto (Journal of Computational and Applied Mathematics, 2018-10)
    In this paper, we propose a center Lipschitz condition for the second Frechet derivative together with the use of restricted domains in order to improve the domain of starting points for Newton's method. In addition, we ...

    Extended local convergence for some inexact methods with applications 

    Argyros, Ioannis K; Legaz, M. J.; Magreñán, Á. Alberto; Moreno, D.; Sicilia, Juan Antonio (Journal of Mathematical Chemistry, 2019-05)
    We present local convergence results for inexact iterative procedures of high convergence order in a normed space in order to approximate a locally unique solution. The hypotheses involve only Lipschitz conditions on the ...

    Different methods for solving STEM problems 

    Argyros, Ioannis K; Magreñán, Á. Alberto; Orcos, Lara ; Sarría, Íñigo ; Sicilia, Juan Antonio (Journal of Mathematical Chemistry, 2019-05)
    We first present a local convergence analysis for some families of fourth and six order methods in order to approximate a locally unique solution of a nonlinear equation in a Banach space setting. Earlier studies have used ...

    Unified local convergence for newton's method and uniqueness of the solution of equations under generalized conditions in a Banach space 

    Argyros, Ioannis K; Magreñán, Á. Alberto; Orcos, Lara ; Sarría, Íñigo (Mathematics, 2019-05)
    Under the hypotheses that a function and its Frechet derivative satisfy some generalized Newton-Mysovskii conditions, precise estimates on the radii of the convergence balls of Newton's method, and of the uniqueness ball ...
    • 1
    • 2
    • 3
    • 4
    • . . .
    • 11

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta comunidadPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso

    afina tu búsqueda

    Autor
    Argyros, Ioannis K (107)
    Magreñán, Á. Alberto (93)Magreñán, Á. Alberto (14)Sicilia, Juan Antonio (13)Sarría, Íñigo (8)... ver todoPalabra claveScopus (50)WOS(2) (49)JCR (47)banach space (32)Scopus(2) (29)... ver todoFecha2023 (1)2022 (1)2021 (1)2020 (6)2019 (5)2018 (29)2017 (36)2016 (9)2015 (14)2014 (5)






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja