• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Otras Publicaciones: artículos, libros...
    • Ver ítem
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Otras Publicaciones: artículos, libros...
    • Ver ítem

    XGBoost Classifier-Based Model to Predict the Nature of Gender-Based Violence. Case Study: Santander, Colombia

    Autor: 
    González-Sanabria, Juan-Sebastián
    ;
    Pinto, Cristian
    ;
    Zuñiga, Jhon
    ;
    Ordoñez, Hugo
    ;
    Blanco‐Valencia, Xiomara Patricia
    Fecha: 
    2025
    Palabra clave: 
    machine learning; gender-based violence; prediction; classification model categories
    Revista / editorial: 
    Journal of Universal Computer Science
    Citación: 
    González-Sanabria J-S, Pinto C, Zuñiga J, Ordoñez H, Blanco X (2025) XGBoost Classifier-Based Model to Predict the Nature of Gender-Based Violence. Case Study: Santander, Colombia. JUCS - Journal of Universal Computer Science 31(8): 758-787. https://doi.org/10.3897/jucs.129515
    Tipo de Ítem: 
    article
    URI: 
    https://reunir.unir.net/handle/123456789/18950
    DOI: 
    https://doi.org/10.3897/jucs.129515
    Dirección web: 
    https://lib.jucs.org/article/129515/list/9/
    Open Access
    Resumen:
    Gender-based violence remains a persistent social challenge in Colombia.Despite efforts to address it, statistics show a steady increase year after year. This study addresses the need for predictive solutions by introducing a Machine Learning model using XGBoost, chosen for its high performance in classification tasks with complex datasets. The model is trained on data collected from the department of Santander, Colombia, aiming to predict gender-based violence incidents based on specific socio-demographic and situational features. The motivation behind using XGBoost lies in its ability to handle diverse data types and produce accurate, interpretable results. Key influential features in the model’s predictions were identified, including the context of the incidents and the relationship between victim and the perpetrator, underscoring the importance of situational as well as individual factors. The model achieved promising results, with an accuracy, precision, recall, and F1 score exceeding 84% demonstrating its potential to effectively predict and contribute to preventing gender-based violence in the region. This approach not only represents a proactive response to a critical social challenge but also offers a framework that could be applied in similar contexts at the national and international levels.
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    icon
    Nombre: Artículo principal
    Tamaño: 1.490Mb
    Formato: application/pdf
    Ver/Abrir
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • Otras Publicaciones: artículos, libros...

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    2026
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    15
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    1

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Neoplasm related mortality risk in Systemic Sclerosis: a nationwide study 

      Martínez-Urbistondo, María; González-Guzmán, Antonio; Fernández-Guitián, Román; Blanco-Valencia, Xiomara Patricia; Esteban-Sampedro, Jorge; Martín-Portugués, Mario; Durán-del Campo, Pedro; Tutor, Pablo; Mellor-Pita, Susana; Ortega-de la Puente, Alfonso; de la Cruz-Echeandía, Marina; Moreno-Torres, Víctor (BMC Rheumatology, 2025)
      Background The higher mortality rates in patients with Systemic sclerosis (SSc) are related to SSc activity, cardiovascular disease, and neoplasms, among other factors. Our objective was to assess the impact of solid ...
    • Trends in Addiction to Psychoactive Substances Among Homeless People in Colombia Using Artificial Intelligence 

      Ordoñez, Hugo; Timarán-Pereira, Ricardo; González-Sanabria, Juan-Sebastián (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 02/2024)
      Introduction: Currently, homelessness should not be seen as just another problem, but as a reality of inequality and the absence of social justice. In this sense, homeless people are subjected to social disengagement, lack ...
    • Impact of immunosuppression on Listeria monocytogenes infection in Spain 

      Vázquez, Elena; de Gregorio, Óscar; Álvarez, Carmen; Soriano, Vicente; Corral, Octavio; Ortega-de la Puente, Alfonso; de la Cruz-Echeandía, Marina; Blanco-Valencia, Xiomara Patricia; Royuela, Ana; Martín-Portugués, Mario; Esteban-Sampedro, Jorge; Moreno-Torres, Víctor (Pathogens and Global Health, 2025)
      Introduction Immunosuppression (IS) determines a higher risk of disease severity from Listeria monocytogenes (LM) infection. Methods We examined the epidemiology of IS in all patients hospitalized with LM in Spain ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja