• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Otras Publicaciones: artículos, libros...
    • Ver ítem
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Otras Publicaciones: artículos, libros...
    • Ver ítem

    Achieving optimal order in a novel family of numerical methods: insights from convergence and dynamical analysis results

    Autor: 
    Moscoso-Martínez, Marlon
    ;
    Chicharro, Francisco I.
    ;
    Cordero, Alicia
    ;
    Torregrosa, Juan R.
    ;
    Ureña-Callay, Gabriela
    Fecha: 
    2024
    Palabra clave: 
    nonlinear equations; optimal iterative methods; convergence analysis; dynamical study; stability
    Revista / editorial: 
    MDPI
    Citación: 
    Moscoso-Martínez, M., Chicharro, F. I., Cordero, A., Torregrosa, J. R., & Ureña-Callay, G. (2024). Achieving optimal order in a novel family of numerical methods: Insights from convergence and dynamical analysis results. Axioms, 13(7), 458.
    Tipo de Ítem: 
    Articulo Revista Indexada
    URI: 
    https://reunir.unir.net/handle/123456789/17948
    DOI: 
    https://doi.org/10.3390/axioms13070458
    Dirección web: 
    https://www.mdpi.com/2075-1680/13/7/458
    Open Access
    Resumen:
    In this manuscript, we introduce a novel parametric family of multistep iterative methods designed to solve nonlinear equations. This family is derived from a damped Newton’s scheme but includes an additional Newton step with a weight function and a “frozen” derivative, that is, the same derivative than in the previous step. Initially, we develop a quad-parametric class with a first-order convergence rate. Subsequently, by restricting one of its parameters, we accelerate the convergence to achieve a third-order uni-parametric family. We thoroughly investigate the convergence properties of this final class of iterative methods, assess its stability through dynamical tools, and evaluate its performance on a set of test problems. We conclude that there exists one optimal fourth-order member of this class, in the sense of Kung–Traub’s conjecture. Our analysis includes stability surfaces and dynamical planes, revealing the intricate nature of this family. Notably, our exploration of stability surfaces enables the identification of specific family members suitable for scalar functions with a challenging convergence behavior, as they may exhibit periodical orbits and fixed points with attracting behavior in their corresponding dynamical planes. Furthermore, our dynamical study finds members of the family of iterative methods with exceptional stability. This property allows us to converge to the solution of practical problem-solving applications even from initial estimations very far from the solution. We confirm our findings with various numerical tests, demonstrating the efficiency and reliability of the presented family of iterative methods.
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    icon
    Nombre: axioms-13-00458-v2.pdf
    Tamaño: 1.359Mb
    Formato: application/pdf
    Ver/Abrir
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • Otras Publicaciones: artículos, libros...

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    236
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    67

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Mean-based iterative methods for solving nonlinear chemistry problems 

      Chicharro, Francisco Israel ; Cordero, Alicia; Martínez, Tobias H. ; Torregrosa, Juan Ramón (Journal of Mathematical Chemistry, 03/2020)
      The original version of this article unfortunately contained an error in title. Unintentionally, the special issue title was presented in addition to the article’s title. The correct title of the article should read as ...
    • CMMSE-2019 mean-based iterative methods for solving nonlinear chemistry problems 

      Chicharro, Francisco Israel ; Cordero, Alicia; Martínez, Tobias H. ; Torregrosa, Juan Ramón (Journal of Mathematical Chemistry, 03/2020)
      The third-order iterative method designed by Weerakoon and Fernando includes the arithmetic mean of two functional evaluations in its expression. Replacing this arithmetic mean with different means, other iterative methods ...
    • Stability and applicability of iterative methods with memory 

      Chicharro, Francisco Israel ; Cordero, Alicia; Garrido, Neus; Torregrosa, Juan Ramón (Journal of Mathematical Chemistry, 15/03/2019)
      Based on the third-order Traub’s method, two iterative schemes with memory are introduced. The proper inclusion of accelerating parameters allows the introduction of memory. Therefore, the order of convergence of the ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja