• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem

    An Analysis of AI Models for Making Predictions: Groundwater Case Study

    Autor: 
    García, Miguel
    ;
    Gil Herrera, Richard de Jesús
    Fecha: 
    2023
    Palabra clave: 
    Artificial Intelligence (AI); machine learning; linear regression; predictions; groundwater; Scopus
    Revista / editorial: 
    SCITEPRESS
    Citación: 
    García, M. and Herrera, R. (2023). An Analysis of AI Models for Making Predictions: Groundwater Case Study. In Proceedings of the 20th International Conference on Smart Business Technologies - ICSBT; ISBN 978-989-758-667-5; ISSN 2184-772X, SciTePress, pages 176-185. DOI: 10.5220/0012120400003552
    Tipo de Ítem: 
    conferenceObject
    URI: 
    https://reunir.unir.net/handle/123456789/16879
    DOI: 
    https://doi.org/10.5220/0012120400003552
    Dirección web: 
    https://www.scitepress.org/Link.aspx?doi=10.5220/0012120400003552
    Resumen:
    The development and application of intelligent models assure continuous monitoring and improvement of quality processes that control most of our city’s infrastructure. Regression models are a popular tool for making predictions in multiple fields, including finance, healthcare, and weather forecasting. However, the limitations of traditional regression models have prompted the development of more advanced techniques, such as Recurrent Neural Networks (RNNs), which have revolutionized the field of prediction modelling. This paper’s main objective is to explore the possibilities that intelligent models offer to real-world problems, specifically the ones that require making predictions to operate, manage, and safeguard the resources and wellbeing of people. The study focuses on groundwater measurements and their applications in predicting reservoir levels, as well as the possibility and criticality of floods, droughts, and other natural phenomena. By analysing available public or open
    Mostrar el registro completo del ítem
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • Artículos Científicos WOS y SCOPUS

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    51
    68
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Gestionando el Conocimiento como Servicio (KaaS) para la Calidad del Producto de Envases de Vidrio 

      Guardia Silva, Julián Esteban; Gil Herrera, Richard de Jesús (IEEE Xplore, 2023)
      Context: Glass Containers’ International Manufacturing. Objective: KaaS to improve the production quality. Method: Interviews, focus group discussions, validation by 22 experts, content analysis and systemic review of 48.8% ...
    • Associating Obesity to Chronic Conditions through Machine Learning Techniques: A Mexican Case 

      Mora-Brito, Fernando; Gil Herrera, Richard de Jesús (IEEE, 2023)
      Eating disorders do not have a single cause, so the prediction of suffering from them is a complex issue. The economic cost associated with the treatment of diseases and disabilities derived from overweight and obesity is ...
    • Proposal and Validation of an Industry 4.0 Maturity Model for SMEs 

      Avila Bohorquez, John Henry; Gil Herrera, Richard de Jesús (Journal of Industrial Engineering and Management-Jiem, 2022)
      Purpose: This paper seeks to establish an Industry 4.0 maturity model for manufacturing SMEs. This research presents the characteristics of the proposed model, which takes the elements and the scope of the fourth industrial ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja