• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem

    Associating Obesity to Chronic Conditions through Machine Learning Techniques: A Mexican Case

    Autor: 
    Mora-Brito, Fernando
    ;
    Gil Herrera, Richard de Jesús
    Fecha: 
    2023
    Palabra clave: 
    eating disorders; obesity; Machine Learning Techniques; Scopus(2)
    Revista / editorial: 
    IEEE
    Citación: 
    Mora-Brito, F. and de Jesús Gil Herrera, R. "Associating Obesity to Chronic Conditions through Machine Learning Techniques: A Mexican Case," 2023 3rd International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME), Tenerife, Canary Islands, Spain, 2023, pp. 1-7, doi: 10.1109/ICECCME57830.2023.10252946.
    Tipo de Ítem: 
    Articulo Revista Indexada
    URI: 
    https://reunir.unir.net/handle/123456789/16857
    DOI: 
    https://doi.org/10.1109/ICECCME57830.2023.10252946
    Dirección web: 
    https://ieeexplore.ieee.org/document/10252946
    Resumen:
    Eating disorders do not have a single cause, so the prediction of suffering from them is a complex issue. The economic cost associated with the treatment of diseases and disabilities derived from overweight and obesity is expensive in relation to the cost of prevention. This research aims to evaluate analysis techniques to identify the relationship between obesity in Mexico and several factors (variables) such as habits and physical conditions, using information technologies. Artificial Intelligence is a resource that can help in complex multifactorial issues, such as the identification of risks in different fields or combination of them. Methodologically, the use of Mexican public databases and expert knowledge is proposed to feed the Artificial Intelligence system to achieve early prediction and/or diagnosis of obesity condition. Throughout the bibliographic reference, the benefit of the use of these technologies for predictive analysis in the health arena is identified, being an opportunity to make this technology available to many people showing the impacts and consequently, favoring prevention. It is demonstrated how the Random Forest model presents a better performance with respect to the other techniques for the classification problem presented.
    Mostrar el registro completo del ítem
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • Artículos Científicos WOS y SCOPUS

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    77
    157
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Gestionando el Conocimiento como Servicio (KaaS) para la Calidad del Producto de Envases de Vidrio 

      Guardia Silva, Julián Esteban; Gil Herrera, Richard de Jesús (IEEE Xplore, 2023)
      Context: Glass Containers’ International Manufacturing. Objective: KaaS to improve the production quality. Method: Interviews, focus group discussions, validation by 22 experts, content analysis and systemic review of 48.8% ...
    • Proposal and Validation of an Industry 4.0 Maturity Model for SMEs 

      Avila Bohorquez, John Henry; Gil Herrera, Richard de Jesús (Journal of Industrial Engineering and Management-Jiem, 2022)
      Purpose: This paper seeks to establish an Industry 4.0 maturity model for manufacturing SMEs. This research presents the characteristics of the proposed model, which takes the elements and the scope of the fourth industrial ...
    • Mental health, suicide attempt, and family function for adolescents' primary health care during the COVID-19 pandemic 

      Rojas-Torres, Indiana-Luz; Ahmad, Mostapha; Martín Álvarez, Juan M.; Golpe, Antonio A.; Gil Herrera, Richard de Jesús (F1000Research, 2022)
      Background: The study's purpose was to identify associations between mental health risk, suicide attempts, and family function. Methods: A correlational, descriptive, and cross-sectional study was carried out in a group ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja