Mostrar el registro sencillo del ítem

dc.contributor.authorHurtado, Remigio
dc.contributor.authorGuzmán, Stefanía
dc.contributor.authorMuñoz, Arantxa
dc.date2023
dc.date.accessioned2024-07-01T12:16:48Z
dc.date.available2024-07-01T12:16:48Z
dc.identifier.citationHurtado, R., Guzmán, S., Muñoz, A. (2023). An Architecture and a New Deep Learning Method for Head and Neck Cancer Prognosis by Analyzing Serial Positron Emission Tomography Images. In: Naiouf, M., Rucci, E., Chichizola, F., De Giusti, L. (eds) Cloud Computing, Big Data & Emerging Topics. JCC-BD&ET 2023. Communications in Computer and Information Science, vol 1828. Springer, Cham. https://doi.org/10.1007/978-3-031-40942-4_10es_ES
dc.identifier.isbn978-3-031-40941-7
dc.identifier.isbn978-3-031-40942-4
dc.identifier.urihttps://reunir.unir.net/handle/123456789/16833
dc.description.abstractIn the U.S. it is estimated that there are more than 20,000 cases of head and neck cancers per year. Radiomics is a much discussed topic in nuclear medicine. The radiomic characteristics of metabolic imaging modalities such as Positron Emission Tomography (PET) have been postulated as surrogates for underlying tumor biology and thus prognosis. Radiomic data can be extracted to discover characteristics and patterns of evolution (in serial images, their changes over time) and to provide a response to treatment. In oncology it has been shown that the degree of tumor heterogeneity is a prognostic factor for survival and an obstacle to cancer control. One of the main obstacles to radiomics research is the lack of understanding among clinicians and data scientists. For this reason, in this paper, we propose a case study, an architecture and a Deep Learning method for the processing and analysis of PET tomographic images for the detection of head and neck cancers. Our architecture consists of three phases: 1) Image preparation, 2) Deep learning method using convolutional neural networks for dimensionality reduction and image feature extraction, and recurrent neural networks for serial image learning of PET, and 3) Optimization. A public dataset is used and the quality of the method is demonstrated using standard quality measures such as Accuracy, Precision, Recall and F1-Score.es_ES
dc.language.isoenges_ES
dc.publisherSpringer Linkes_ES
dc.relation.urihttps://link.springer.com/chapter/10.1007/978-3-031-40942-4_10#citeases_ES
dc.rightsrestrictedAccesses_ES
dc.subjectcanceres_ES
dc.subjectarchitecturees_ES
dc.subjectpositron emission tomography imageses_ES
dc.subjectheades_ES
dc.subjectScopuses_ES
dc.titleAn Architecture and a New Deep Learning Method for Head and Neck Cancer Prognosis by Analyzing Serial Positron Emission Tomography Imageses_ES
dc.typeconferenceObjectes_ES
reunir.tag~ARIes_ES
dc.identifier.doihttps://doi.org/10.1007/978-3-031-40942-4_10


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem