• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • In Press
    • In Press
    • Ver ítem
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • In Press
    • In Press
    • Ver ítem

    Anti-Diabetic Therapeutic Medicinal Plant Identification Using Deep Fused Discriminant Subspace Ensemble (D2 SE)

    Autor: 
    Sasikaladevi, N.
    ;
    Pradeepa, S.
    ;
    Revathi, A.
    ;
    Vimal, S.
    ;
    Dhiman, Gaurav
    Fecha: 
    05/2024
    Palabra clave: 
    classification; deep learning; diabetic plant identification; discriminant subspace ensemble; internet of things (IoT); IJIMAI
    Revista / editorial: 
    International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI)
    Citación: 
    N. Sasikaladevi, A. Revathi, S. Pradeepa, S.Vimal, G. Dhiman. Anti-Diabetic Therapeutic Medicinal Plant Identification Using Deep Fused Discriminant Subspace Ensemble (D2 SE), International Journal of Interactive Multimedia and Artificial Intelligence, (2024), http://dx.doi.org/10.9781/ijimai.2024.05.003
    Tipo de Ítem: 
    article
    URI: 
    https://reunir.unir.net/handle/123456789/16737
    DOI: 
    http://dx.doi.org/10.9781/ijimai.2024.05.003
    Open Access
    Resumen:
    About 422 million people worldwide have diabetes, the majority living in low-and middle-income countries, and 1.5 million deaths are directly attributed to diabetes each year. According to the Botanical Survey of India, India is home to more than 8,000 species of medicinal plants. The natural medications with antidiabetic activity are widely formulated because they have better compatibility with human body, are easily available and have less side effects. They may act as an alternative source of antidiabetic agents. The fused deep neural network (DNN) model with Discriminant Subspace Ensemble is designed to identify the diabetic plants from VNPlant200 data set. Here, the deep features are extracted using DenseNet201 and the matrix-based discriminant analysis is adopted to learn the discriminative feature subspace for classification. To further improve the performance of discriminative subspace, a nearest neighbors technique is used to produce a subspace ensemble for final diabetic therapeutic medicinal plant image classification. The developed model attained the highest accuracy of 97.5% which is better compared to other state of art algorithms. Finally, the model is integrated into a mobile app for robust classification of anti-diabetic therapeutic medicinal plant with real field images.
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    icon
    Nombre: Anti-Diabetic Therapeutic Medicinal Plant Identification Using Deep Fused Discriminant Subspace Ensemble (D2 SE).pdf
    Tamaño: 2.706Mb
    Formato: application/pdf
    Ver/Abrir
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • In Press

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    153
    133
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    48
    73

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Enhanced resource allocation in mobile edge computing using reinforcement learning based MOACO algorithm for IIOT 

      Vimal, S.; Khari, Manju; Dey, Nilanjan; González-Crespo, Rubén ; Harold Robinson, Yesudhas (Computer Communications, 01/02/2020)
      The Mobile networks deploy and offers a multiaspective approach for various resource allocation paradigms and the service based options in the computing segments with its implication in the Industrial Internet of Things ...
    • Energy efficiency maximization algorithm for underwater Mobile sensor networks 

      Pasupathi, Subbulakshmi; Vimal, S.; Harold Robinson, Yesudhas; Verdú, Elena ; González-Crespo, Rubén (Earth science informatics, 2021)
      Modern Underwater Wireless Sensor Networks (UWSN) would provide big administrations with numerous underwater surveying and technical applications, working in the unstable submerged deep-water conditions. A huge obstacle ...
    • Energy enhancement using Multiobjective Ant colony optimization with Double Q learning algorithm for IoT based cognitive radio networks 

      Vimal, S.; Khari, Manju; González-Crespo, Rubén ; Kalaivani, L.; Dey, Nilanjan; Kaliappan, Madasamy (Computer Communications, 03/2020)
      Internet of Things (IoT) is the efficient wireless communication in the modern era, energy efficiency is the primary issue that focuses mainly on the Cognitive network. Most of the CR networks are focusing on battery ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja