Mostrar el registro sencillo del ítem

dc.contributor.authorSasikaladevi, N.
dc.contributor.authorPradeepa, S.
dc.contributor.authorRevathi, A.
dc.contributor.authorVimal, S.
dc.contributor.authorDhiman, Gaurav
dc.date2024-05
dc.date.accessioned2024-06-12T13:46:04Z
dc.date.available2024-06-12T13:46:04Z
dc.identifier.citationN. Sasikaladevi, A. Revathi, S. Pradeepa, S.Vimal, G. Dhiman. Anti-Diabetic Therapeutic Medicinal Plant Identification Using Deep Fused Discriminant Subspace Ensemble (D2 SE), International Journal of Interactive Multimedia and Artificial Intelligence, (2024), http://dx.doi.org/10.9781/ijimai.2024.05.003es_ES
dc.identifier.urihttps://reunir.unir.net/handle/123456789/16737
dc.description.abstractAbout 422 million people worldwide have diabetes, the majority living in low-and middle-income countries, and 1.5 million deaths are directly attributed to diabetes each year. According to the Botanical Survey of India, India is home to more than 8,000 species of medicinal plants. The natural medications with antidiabetic activity are widely formulated because they have better compatibility with human body, are easily available and have less side effects. They may act as an alternative source of antidiabetic agents. The fused deep neural network (DNN) model with Discriminant Subspace Ensemble is designed to identify the diabetic plants from VNPlant200 data set. Here, the deep features are extracted using DenseNet201 and the matrix-based discriminant analysis is adopted to learn the discriminative feature subspace for classification. To further improve the performance of discriminative subspace, a nearest neighbors technique is used to produce a subspace ensemble for final diabetic therapeutic medicinal plant image classification. The developed model attained the highest accuracy of 97.5% which is better compared to other state of art algorithms. Finally, the model is integrated into a mobile app for robust classification of anti-diabetic therapeutic medicinal plant with real field images.es_ES
dc.language.isoenges_ES
dc.publisherInternational Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI)es_ES
dc.relation.ispartofseries;In Press
dc.rightsopenAccesses_ES
dc.subjectclassificationes_ES
dc.subjectdeep learninges_ES
dc.subjectdiabetic plant identificationes_ES
dc.subjectdiscriminant subspace ensemblees_ES
dc.subjectinternet of things (IoT)es_ES
dc.subjectIJIMAIes_ES
dc.titleAnti-Diabetic Therapeutic Medicinal Plant Identification Using Deep Fused Discriminant Subspace Ensemble (D2 SE)es_ES
dc.typearticlees_ES
reunir.tag~IJIMAIes_ES
dc.identifier.doihttp://dx.doi.org/10.9781/ijimai.2024.05.003


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem