Mostrar el registro sencillo del ítem

dc.contributor.authorJuez-Castillo, Graciela
dc.contributor.authorValencia-Vidal, Brayan
dc.contributor.authorOrrego, Lina M.
dc.contributor.authorCabello-Donayre, María
dc.contributor.authorMontosa-Hidalgo, Laura
dc.contributor.authorPérez-Victoria, José M.
dc.date2024
dc.date.accessioned2024-05-09T15:41:59Z
dc.date.available2024-05-09T15:41:59Z
dc.identifier.citationJuez-Castillo, G., Valencia-Vidal, B., Orrego, L. M., Cabello-Donayre, M., Montosa-Hidalgo, L., & Pérez-Victoria, J. M. (2024). FiCRoN, a deep learning-based algorithm for the automatic determination of intracellular parasite burden from fluorescence microscopy images. Medical Image Analysis, 91, 103036.es_ES
dc.identifier.issn1361-8415
dc.identifier.urihttps://reunir.unir.net/handle/123456789/16559
dc.description.abstractProtozoan parasites are responsible for dramatic, neglected diseases. The automatic determination of intracellular parasite burden from fluorescence microscopy images is a challenging problem. Recent advances in deep learning are transforming this process, however, high-performance algorithms have not been developed. The limitations in image acquisition, especially for intracellular parasites, make this process complex. For this reason, traditional image-processing methods are not easily transferred between different datasets and segmentation-based strategies do not have a high performance. Here, we propose a novel method FiCRoN, based on fully convolutional regression networks (FCRNs), as a promising new tool for estimating intracellular parasite burden. This estimation requires three values, intracellular parasites, infected cells and uninfected cells. FiCRoN solves this problem as multi-task learning: counting by regression at two scales, a smaller one for intracellular parasites and a larger one for host cells. It does not use segmentation or detection, resulting in a higher generalization of counting tasks and, therefore, a decrease in error propagation. Linear regression reveals an excellent correlation coefficient between manual and automatic methods. FiCRoN is an innovative freedom-respecting image analysis software based on deep learning, designed to provide a fast and accurate quantification of parasite burden, also potentially useful as a single-cell counter.es_ES
dc.language.isoenges_ES
dc.publisherMedical Image Analysises_ES
dc.relation.ispartofseries;vol. 91
dc.relation.urihttps://www.sciencedirect.com/science/article/abs/pii/S1361841523002967?via%3Dihubes_ES
dc.rightsrestrictedAccesses_ES
dc.subjectdeep learninges_ES
dc.subjectfluorescence imaginges_ES
dc.subjecthemees_ES
dc.subjectintracellular parasiteses_ES
dc.subjectLeishmaniaes_ES
dc.titleFiCRoN, a deep learning-based algorithm for the automatic determination of intracellular parasite burden from fluorescence microscopy imageses_ES
dc.typearticlees_ES
reunir.tag~OPUes_ES
dc.identifier.doihttps://doi.org/10.1016/j.media.2023.103036


Ficheros en el ítem

FicherosTamañoFormatoVer

No hay ficheros asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem