• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • In Press
    • In Press
    • Ver ítem
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • In Press
    • In Press
    • Ver ítem

    Optimal Target-Oriented Knowledge Transportation For Aspect-Based Multimodal Sentiment Analysis

    Autor: 
    Zhang, Linhao
    ;
    Jin, Li
    ;
    Xu, Guangluan
    ;
    Li, Xiaoyu
    ;
    Sun, Xian
    ;
    Zhang, Zequn
    ;
    Zhang, Yanan
    ;
    Li, Qui
    Fecha: 
    02/2024
    Palabra clave: 
    aspect-based multimodal sentiment analysis,; optimal transport; social media opinion mining
    Revista / editorial: 
    International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI)
    Citación: 
    L. Zhang, L. Jin, G. Xu, X. Li, X. Sun, Z. Zhang, Y. Zhang, Q. Li. Optimal Target-Oriented Knowledge Transportation For Aspect-Based Multimodal Sentiment Analysis, International Journal of Interactive Multimedia and Artificial Intelligence, (2024), http://dx.doi.org/10.9781/ijimai.2024.02.005
    Tipo de Ítem: 
    article
    URI: 
    https://reunir.unir.net/handle/123456789/16226
    DOI: 
    http://dx.doi.org/10.9781/ijimai.2024.02.005
    Open Access
    Resumen:
    Aspect-based multimodal sentiment analysis under social media scenario aims to identify the sentiment polarities of each aspect term, which are mentioned in a piece of multimodal user-generated content. Previous approaches for this interdisciplinary multimodal task mainly rely on coarse-grained fusion mechanisms from the data-level or decision-level, which have the following three shortcomings:(1) ignoring the category knowledge of the sentiment target mentioned in the text) in visual information. (2) unable to assess the importance of maintaining target interaction during the unimodal encoding process, which results in indiscriminative representations considering various aspect terms. (3) suffering from the semantic gap between multiple modalities. To tackle the above challenging issues, we propose an optimal target-oriented knowledge transportation network (OtarNet) for this task. Firstly, the visual category knowledge is explicitly transported through input space translation and reformulation. Secondly, with the reformulated knowledge containing the target and category information, the target sensitivity is well maintained in the unimodal representations through a multistage target-oriented interaction mechanism. Finally, to eliminate the distributional modality gap by integrating complementary knowledge, the target-sensitive features of multiple modalities are implicitly transported based on the optimal transport interaction module. Our model achieves state-of-theart performance on three benchmark datasets: Twitter-15, Twitter-17 and Yelp, together with the extensive ablation study demonstrating the superiority and effectiveness of OtarNet.
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    icon
    Nombre: Optimal Target-Oriented Knowledge Transportation For Aspect-Based Multimodal Sentiment Analysis.pdf
    Tamaño: 4.037Mb
    Formato: application/pdf
    Ver/Abrir
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • In Press

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    282
    161
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    186
    62

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • IoT based psychological and physical stress evaluation in sportsmen using heart rate variability 

      Jin, N.; Zhang, X; Hou, Z.; Sanz Prieto, Iván ; Mohammed, B.S (Elsevier Ltd, 2021)
      Sports have become the important and most prominent play for each and every country to indulge their pride to the world. For this reason, countries are eager and interested in protecting the players/sportsmen in many ways ...
    • STAIBT: Blockchain and CP-ABE Empowered Secure and Trusted Agricultural IoT Blockchain Terminal 

      Zhang, Guofeng; Chen, Xiao; Zhang, Lei; Feng, Bin; Guo, Xuchao; Liang, Jingyun; Zhang, Yanan (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 09/2022)
      The integration of agricultural Internet of Things (IoT) and blockchain has become the key technology of precision agriculture. How to protect data privacy and security from data source is one of the difficult issues in ...
    • Modeling of Performance Creative Evaluation Driven by Multimodal Affective Data 

      Wu, Yufeng; Zhang, Longfei; Ding, Gangyi; Xue, Tong; Zhang, Fuquan (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 09/2021)
      Performance creative evaluation can be achieved through affective data, and the use of affective featuresto evaluate performance creative is a new research trend. This paper proposes a “Performance Creative—Multimodal ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja