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Abstract

Aspect-based multimodal sentiment analysis under social media scenario aims to identify the sentiment 
polarities of each aspect term, which are mentioned in a piece of multimodal user-generated content. Previous 
approaches for this interdisciplinary multimodal task mainly rely on coarse-grained fusion mechanisms 
from the data-level or decision-level, which have the following three shortcomings:(1) ignoring the category 
knowledge of the sentiment target (mentioned in the text) in visual information. (2) unable to assess the 
importance of maintaining target interaction during the unimodal encoding process, which results in 
indiscriminative representations considering various aspect terms. (3) suffering from the semantic gap between 
multiple modalities. To tackle the above challenging issues, we propose an optimal target-oriented knowledge 
transportation network (OtarNet) for this task. Firstly, the visual category knowledge is explicitly transported 
through input space translation and reformulation. Secondly, with the reformulated knowledge containing 
the target and category information, the target sensitivity is well maintained in the unimodal representations 
through a multistage target-oriented interaction mechanism. Finally, to eliminate the distributional modality 
gap by integrating complementary knowledge, the target-sensitive features of multiple modalities are 
implicitly transported based on the optimal transport interaction module. Our model achieves state-of-the-
art performance on three benchmark datasets: Twitter-15, Twitter-17 and Yelp, together with the extensive 
ablation study demonstrating the superiority and effectiveness of OtarNet.
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I.	 Introduction

Social media websites provide interactive platforms to facilitate 
the creation and sharing of individuals’ expressions through 

multiple social activities (for example, ’like’, ’reply’, ’retweet’, ’@’, 
’share’ in Twitter) [1]. Fine-grained sentiment analysis over these user 
generated content (UGC) in social websites (e.g., Twitter, Flickr) are 
effective in understanding public opinions toward social hotspots or 
figures, and it has drawn increasing recent attention in both academia 
and industry [2]. For example, socialists and psychologists have strong 
interests in understanding individual reactions toward specific social 
issues. Companies are willing to acquire online evaluations of their 
products as feedback to make further improvements. Therefore, how 
to incorporate heterogeneous multimodal information to conduct 
fine-grained sentiment analysis over the mentioned aspect terms has 
become an emerging interdisciplinary research problem, proposed as 
Aspect-Based Multimodal Sentiment Analysis (ABMSA) [3]-[5]. 

Despite the well-established research fields of multimodal learning 
and affective computing, there are under-researched challenges for the 
aspect-based multimodal sentiment analysis (ABMSA) toward social 
media user-generated content (UGC): (1) Due to the viral nature of 
internet posts, sentences in social media UGC are always shorter, more 
informative and informal compared to the well-organized reviews 
used for traditional affective computing. (2) The visual information is 
much noisier with multiple objects for UGC than for videos of human 
speakers commonly leveraged in multimodal sentiment analysis. (3) 
Except for the modality gap that commonly presents in multimodal 
learning, there are additional semantic gaps for social media UGC, 
considering the fact that linguistic information in UGC focuses more 
on opinions reflecting sentiment polarities, while visuals imply more 
on the sentiment targets. These peculiarities limited the performance 
of methods developed for traditional opinion mining tasks [6], [7].

However, most existing research makes little targeted effort to 
social media aspect-based multimodal sentiment analysis. Traditional 
multimodal methods with early fusion in data-level [8], [9], or late 
fusion in decision-level [10],[11], suffer the problem of extra input 
redundancy and distributional modality gap, which result in the 
suboptimal performance for multimodal interaction. Although 
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[1],[12], [13] have made attempts to eliminate the modality gap 
through modified cross-modal attention mechanisms, they neglect 
the semantic gap in social media user-generated content described 
above, especially the underlying target category knowledge in visual 
components. These semantic gaps may finally result in the increasing 
risk of misalignment in inter-modal interactions. Besides, previous 
works also neglect the importance of maintaining target sensitivity, 
which is particularly essential in acquiring discriminative multimodal 
representations to perform fine-grained analysis considering various 
aspect terms.

In this paper, we propose OtarNet, a multi-stage knowledge 
transportation framework based on optimal transport (OT) for 
ABMSA, which is effective in maintaining target sensitivity to avoid 
triviality and misalignment, caused by insufficient aspect interaction 
and semantic gaps respectively. Firstly, we explicitly transport the 
visual category knowledge through input space translation and 
reformulation, through which we acquire a synthetic sequence to 
supply context information. Secondly, the synthetic context sequence 
is incorporated into the unimodal encoding process, and ensures 
the good maintenance of target sensitivity through the proposed 
intra-modality target interaction mechanism, which outputs target-
sensitive unimodal representations rich in semantic knowledge. 
Thirdly, the multiple unimodal representations are fed into the 
optimal transport interaction module, in which the inter-modality 
complementary knowledge (i.e. opinion knowledge in text and target 
knowledge in image) is implicitly transported to the other modality. 
Our contributions are summarized as follows:

•	 We propose OtarNet, a multi-stage knowledge transportation 
framework for aspect-based multimodal sentiment analysis. 
OtarNet explicitly transports the visual context knowledge before 
feature fusion to maintain target sensitivity, which is neglected by 
most multimodal approaches developed for traditional sentiment 
analysis. The proposed intra-modality target interaction 
mechanism is effective in avoiding triviality and misalignment.

•	 We leverage the optimal transport interaction to implicitly 
transport inter-modality complementary knowledge. OT 
interaction is effective in eliminating the distributional modality 
and semantic gap, which puts an extra burden on previous data-
level or decision-level fusion techniques.

•	 We conduct extensive quantitative and qualitative experiments 
on three benchmark datasets: Twitter-15, Twitter-17 and Yelp. 
The newly-achieved state-of-the-art performance, together with 
the extensive ablation studies and visualizations demonstrate the 
superiority and effectiveness of OtarNet.

II.	 Related Work

Despite the well-established field of sentiment analysis, our OtarNet 
focuses on aspect-based (aspect term) multimodal sentiment analysis, 
which is a novel challenge proposed firstly in 2019 by [3] and drawing 
increasing attention. This relatively new task stemmed from two lines 
of research, namely fine-grained sentiment analysis and multimodal 
sentiment analysis.

A.	Fine-Grained Sentiment Analysis
Fine-grained sentiment analysis aims to identify the sentiment 

polarity of a textual sentence on a given aspect or target [14]. Its 
research methods can be divided into three main groups: traditional 
feature selection based methods, neural network based methods and 
adaption of transformer-style models.

Early lexicon-based methods [15], [16] were established on 
handcrafted features such as lexical, syntactic and semantic features. 

These studies always demanded for a professional prior knowledge in 
linguistics [17], [18] and sometimes failed to capture the dependency 
between the given target and associated context. Later, neural 
networks with higher capability of encoding original features as 
continuous vectors were applied. [19]–[21] modified Long Short-
Term Memory (LSTM) recurrent networks with stronger expressive 
power by attention mechanism to incorporate key information in 
sentence to a target aspect. [22] chose to use Gated Recurrent Unit 
(GRU) modules to utilize content information, which was able to 
deal with the syntactically structures of complex sentence. Moreover, 
sophisticated neural models with subtle intermediate attention were 
developed. [23] designed a Memory Network with multi-hop attention 
and external memory, which can explicitly capture the importance of 
each context word. [20], [24] leveraged multi-layer and multi-grained 
attention correspondingly to exploit semantic dependencies between 
opinion words in multi-level modeling for aspects. Recently, since the 
pre-trained language model [25] has made success in many tasks, [6] 
utilized BERT with an additional corpus and realized performance 
improvement in both aspect extraction and sentiment label 
classification. [26] achieved accurate prediction for this task which has 
been translated to a sentence-pair classification task by constructing 
auxiliary sentences. However, these studies fail to consider visual 
features that may boost these text-based approaches, which are one 
key factor of this paper.

B.	Multimodal Sentiment Analysis
Multimodal sentiment analysis is an emerging research, the 

goal of which is to regress or classify the overall sentiment of an 
utterance integrating textual and non-textual information. Relative 
methods can also be divided into three groups: feature engineering 
methods, neural network based methods and modification of large 
pretrained models.

Early work mainly focused on feature engineering, which [27] 
combined adjective-noun pairs with linguistic features to calculate 
sentiment scores, and [28] proposed to fuse text and image features 
to obtain similarity of two instances for a new neighborhood 
classifier. Then motivated by the fusion approaches in feature and 
score-level [29], [30], pre-trained text and image CNNs [31] were 
conducted to extract feature and combine these multimodal features 
to train a logistics regression model. [32] modified LSTM to capture 
interactions between modalities through time. After that, models 
modified with attention mechanism [1], [12], [13] were proposed, 
[33] introduced a novel Attention-Based Modality-Gated Networks 
(AMGN) to learn the fine-grained correlation and the discriminative 
features between different modalities. In 2019, [3] introduced a Multi-
Interactive Memory Network (MIMN) to supervise the textual and 
visual information under the given aspect. MIMN learned not only the 
interactive influences between cross-modality data but also the self 
influences in single-modality data. And more recently, [4] modified 
BERT architecture based on target-sensitive cross attention to capture 
the interaction between modalities. [34] proposed EF-CapTrBERT 
model to solve this task through input space translation, exploiting 
generated caption to substitute original images.

However, the existing approaches mainly focus on eliminating 
the modality gap generated by unimodal encoding procedures. Our 
OtarNet focuses more on target sensitivity and semantic gaps, which 
are solved based on multi-stage knowledge transportation and Optimal 
Transport Interaction.

C.	Optimal Transport
Recently, Optimal Transport (OT) has attracted increasing 

attention in multiple fields [35]. As one of the research hotspots 
from optimization theory, OT has excellent performance on sequence 
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alignment and domain adaption problems. By finding the best 
transportation plan between two data distributions with minimum 
cost, OT explicitly formulates signals to provide additional guidance 
[36]. Thus OT has achieved promising results compared to attention-
based approaches guided by task-specific loss only [37]. For OT 
applications related to knowledge transportation, [38] explicitly 
distilled the knowledge of the monolingual summarization teacher 
into the student through an OT-based distance, which is effective in 
estimating the discrepancy and constructing cross-lingual correlation. 
And VOLT [39] formulated the quest of vocabularization as an optimal 
transport (OT) problem by finding the optimal transport matrix from 
the character distribution to the vocabulary token distribution. [40] 
used the transport plan as an ad-hoc attention score in the context of 
network embedding to align data modalities. MuLOT [41] utilized OT-
based domain adaptation to learn strong cross-modal dependencies 
for sarcasm and humor detection. [42] innovatively revisited the label 
assignment from a global perspective and proposed to formulate the 
assigning procedure as an optimal transport (OT) problem. However, 
none of these studies have exploited optimal transport to implicitly 
incorporate complementary knowledge in ABMSA.

III.	Problem Definition

Given a set of multimodal samples (e.g., tweets from Twitter) 
𝒟. Each piece of user-generated content 𝐶 ∈ 𝒟 consists of text 
information 𝑇 with 𝑛 words [𝑤1, ..., 𝑤𝑛] (e.g., [Taylor Swift drawn with 
colored pencils! [emoji] ]) and an associated image I (e.g., first picture 
in Fig. 1). The sentiment target Ttar , as a sub-sequence of words in T 
is also given (e.g., [Taylor Swift]), which is assigned a sentiment label 
ytar, belonging to a given label set, such as {positive, negative, neutral} 
for Twitter and rating scores {1, 2, 3, 4, 5} for YELP. Our problem 
definition can be stated as follows: given 𝒟 as training corpus, the 
task goal is to learn a target-oriented sentiment classifier, so that it can 
correctly predict sentiment labels ytar for sentiment targets Ttar when 
encountering unseen samples. Note that there may be one or more 
targets mentioned in one sentence T, and the model needs to predict a 
single sentiment label for each associated target.

A lot of this going on in Chapel
Hill, North Carolina today  
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Alabama 

Aspect-Based Multimodal Sentiment Analysis
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Fig. 1. An example of aspect-based multimodal sentiment analysis (ABMSA) 
from Twitter. One or more target aspect terms will be mentioned in the text 
for one piece of user-generated content (UGC). The difficulties of analyzing 
social media UGC lie in their convenient non-standard writing and network 
vocabulary.

IV.	Proposed Methodology

In this section, we formulate our task firstly and then decompose 
OtarNet, as Fig. 2 shows, into three main components: (1) Intra-
modality target knowledge transportation, which combines 
the semantic fusion and implicit fusion through incorporating 
constructed bridge sentence and bridge feature to calculate the target-
sensitive feature. (2) Inter-modality complementary knowledge 
translation, which enhances the interactivity across image and 
text modalities. (3) Multimodal feature fusion, which conducts the 
final stage of fusion to capture the interior relationship between 
modalities. (4) Optimization process with a classifier is finally 
leveraged to minimize the standard cross-entropy loss function as 
the objective. The aforementioned modules are introduced in the 
following subsections, respectively.

Aggregation

R
esN

et152

Input Space 
Translation Module

Linguistic Target 
Interaction

V
isual Target 
Interaction …

…

[SEP ]

…

[SEP ]

[CLS ]

Aggregation

 Text-Image 
Transportation Plan 

Explicit Transportation

...

...

   Best 

…

Congrats

Ryan

 Coogler

on

 winning

…

Auxiliary Reconstructed Sentence

C
lassifier

M
ulti-head A

�
ention-B

ased Feature Fusion

Multimodal 
Representation

Transportation 
Cost Matrix

 Image-Text 
Transportation Plan 

Sinkhorn-Knopp Algorithm

Sinkhorn-Knopp Algorithm

Optimal Transport    
Gaussian Kernel

Target-Sensitive 
Unimodal Features

Vt

Rl→v

Rv→l

Rv|l

Rl|v

Lt

Fig. 2. The workflow of the proposed model OtarNet. Firstly, the auxiliary sentence with its representations are reconstructed through the Input Space 
Translation Module. Secondly, the auxiliary sequences containing target information are explicitly transported into the two unimnodal encoding processes, 
which generate two target-sensitive features. Thirdly, the target-sensitive features are intergrated through the OIptimal Transport-Based Interaction Module, 
which are designed to capture the complementary knowledge in multiple modalities. Finally, the multi-head attention-based fusion layer is leveraged to 
integrate the multimodal features, which are then used for classification.
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A.	Intra-Modality Target Knowledge Transportation
This section introduces the process of transporting target 

knowledge during the unimodal encoding procedure.

1.	Input Space Translation & Reformulation
This module is leveraged to distill the object-level target information 

in complex visuals, and generate a synthetic context sequence with 
its features learned by a pretrained language model1. The detailed 
information of this module is displayed in Fig. 3.
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Fig. 3. Procedure of Input Space Translation & Reformulation.

Let Cu denote the content generated by user u, which contains a 
piece of text information (e.g. tweets, retweets or comments) Tu 
and an associated image Iu. To follow the work of [34], we exploit a 
transformed-style architecture to implement a non-autoregressive 
text generator GAu(Iu), through which the object-level target 
information is distilled into caption sentences. To leverage the aspect 
term information in the text modality, as well as the distilled visual 
information, we reconstruct the auxiliary sentence SAu: 

	 (1)

where Tas denotes the aspect term containing a sub-sequence of k 
words {t1, ..., tk} from text information Tu, GAu(Iu) denotes the caption 
generator [34], implemented by utilizing a carefully designed variant 
model from DETR (DEtection TRansformer) [43] to get the m caption 
words {c1, ..., cm}. Parameters of the caption generator GAu in (1) are 
pretrained well and frozen during the whole experiment.

With the obtained auxiliary sentence, we can explicitly transport 
the context knowledge into the linguistic encoding process in the 
input space. And for the visual stream, the context knowledge can be 
transported in the feature space, thus we adopt a pretrained language 
model, which shares the same parameters with the linguistic encoder, 
to get the auxiliary context features Fau.

2.	Linguistic Knowledge Transportation & Encoding
This module is designed to incorporate target information while 

implementing the linguistic encoding process. As shown in Fig. 2, 
linguistic target interaction is leveraged before the encoding stage. 
As the pre-trained language models (like BERT, RoBERTa [6], [25]) 
can help acquire contextualized word representations with initialized 
parameters, which get well-trained over a large corpus. Thus the 
transformer-style encoders in sentence-pair classification mode 
are leveraged to integrate the input sentence and the reconstructed 
auxiliary sequence. The target-sensitive linguistic feature Lt can be 
achieved as:

	 (2)

In (2), LM denotes the pretrained language models like BERT, 
RoBERTa, etc. ’[CLS]’ and ’[SEP]’ are the special tokens in the 

1  https://github.com/saahiluppal/catr/

vocabulary used for classification and separation, and S_trans is the 
operation of input space translation introduced earlier in Fig. 2.

3.	Visual Knowledge Transportation & Encoding
Dually, this module is designed to incorporate target information 

into visual feature space during the encoding process. Encoded visual 
features are firstly extracted from an input image Iu by ResNet [44]. 
The output size of the last convolutional layer in ResNet is 𝑙 × 𝑙 × dv, 
where 𝑙 × 𝑙 denotes the 𝑙2 block regions of an input image, dv denotes 
the depth of feature map. The extracted visual feature of block regions 

 is fed into a linear transformation with matrix Wv ∈ ℝdv×d_h ), in 
which dh denotes the dimension of hidden states from BERT encoder. 
Thus the visual feature V is projected into the same space as the 
linguistic feature to match the embedding size of BERT:

	 (3)

With the obtained auxiliary context features  and 
visual features V in (3), the target-sensitive visual representations 
can be achieved through visual target interaction, which conducts 
attentive interaction. Specifically, for the output of 𝑖-th head , we 
acquire the necessary query, key-value vectors through linear feature 
projection: . The vectors are then 
used for calculating the attention output of the i-th head:

	 (4)

All the attention outputs of m such heads  in 
(4) are concatenated together, followed by a projection matrix Wj to 
get aggregated representation of m heads with residual connection 
and layer normalization (denoted as LN):

	 (5)

Moreover, a dense layer and another residual connection are 
utilized from input V to the non-linear activated output feature of 
Mt in (5), followed by layer normalization to acquire the final target-
sensitive visual feature Vt:

	 (6)

where [·] denotes the concatenation operation in feature dimension, 
σ is the non-linear activation function GELU [45], , 

 are trainable parameters, Vt in (6) denotes target-sensitive 
visual feature, the final output of visual knowledge transportation.

B.	 Inter-Modality Complementary Knowledge Transportation
To enhance the interactivity across image and text modality, we 

exploit a recently proposed technique viz. optimal transport kernel 
(OTK) to incorporate information between heterogeneous modalities. 
OTK incorporates the idea of the optimal transport plan and kernel 
methods to fuse the unimodal features with varying dimensions and 
dependencies.

Let Vt = (v1, v1, ..., vn ) be the target-sensitive visual feature, Lt = (l1, 
l1, ..., lp ) denotes the target-sensitive linguistic feature obtained in (4)  
(n = p is not necessary). Let κ be the Gaussian kernel with reproducing 
kernel Hilbert space (RKHS) ℋ and its associated kernel embedding 
φ: ℝd → ℋ. Then we can get the n × p cost matrix K which carries the 
comparisons κ(vi, lj) before alignment.

Then the transport plan between Vt and Lt, denoted by the n × p 
matrix P(Vt , Lt ) is defined as the unique solution of:
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	 (7)

	 (8)

where Cij in (7) represents the pairwise costs for aligning the 
elements of Vt and Lt. Equation (8) is the optimizing objective in the 
space of admissible couplings. To follow the recent work of [46], we 
choose C = −K in our implementation, then the interaction based on 
transport matrix P(Vt , Lt ) is defined as:

	 (9)

The hybrid linguistic feature Lh is obtained by aggregating the 
original target-sensitive linguistic feature Lt and the visual transported 
interaction feature Rv→l = Φl(v) from (9):

	 (10)

Similar to (10), we obtain the final hybrid visual feature Vh through 
(11), which is also a result of concatenation:

	 (11)

C.	Multimodal Feature Fusion
Multimodal feature transfusion is designed to conduct the final 

stage of fusion, which captures the correlation between elements from 
different modalities. Through the above phase of OTI, two hybrid 
features Vh and Lh are obtained. OTI module adopts different vectors 
as queries to produce weighted representations, which are sensitive 
to features from different information streams. However, the features 
across modalities are involved in interactions through transportation 
weights, while the direct fusion of element values is still missing. So we 
propose to use multimodal feature transfusion based mainly on multi-
head self-attention to capture the missing correlation in the element 
level. The input of multimodal feature transfusion is organized based 
on the two obtained hybrid features Vh, Lh by OTI, and the target-
sensitive visual feature Vt.

The pooling operation is leveraged on visual features by taking 
the transformation of the first token. Then the output products are 
concatenated with linguistic features Im:

	 (12)

	 (13)

	 (14)

where X[1] in (12) and (13)denotes the first element of X. And 
 in (14) are fed into the multimodal feature transfusion 

module, which outputs Om as logits fed into the classifier.

D.	Optimization Process
After the forward process of multimodal feature transfusion, we 

get the final multimodal hidden states Om for sentiment classification. 
Following previous work [4], [47], the pooled output of the first token 
is adopted. which is denoted as Hp ∈  and fed into a linear function 
followed by a softmax function for classification:

	 (15)

In (15) , c is the category number of dataset. All the 
parameters in OtarNet are optimized through back propagation while 
minimizing the standard cross-entropy loss function defined in (16):

	 (16)

The overall training process is displayed in the following algorithm 
1, in which line 1-6 initializes model parameters and input data, line 
7-10 includes the process of input space translation based on input 
data, line 11-12 represents for the forward process of OtarNet to 
acquire final representation Hp and line 14-17 refers to the optimization 
method in details.

Algorithm 1. Training Process of OtarNet
Input: Training Set 𝒟, max number of epochs Nepoch, batch size β, 

learning rate η, parameters of caption generator θcg,
Output: θOtarNet

1: Initialize caption generator CG(θcg)
2: repeat
3:     for i = 1 →  do
4:          mini_batch ← sample(T, β)
5:          L ← 0
6:          for S ∈ mini_batch do
7:               Forward image through encoder:
                  V ← ResNet(I)
8:               Forward image through caption generator:
                  caption ← CG(I)
9:               Tokenize caption and tweet sentence St

10:              Obtain Sau and Fau via the input space translation module:
                  {Sau, Fau} ← MB(caption, St)
11:              Forward {St, Sau, Fau, V} to get features:
                  Lt ← BERT(St + Sau)
                  Vt ← ImplicitFusion(V, Fau)
12:              Forward {Lt, Vt} to get the final Hp

13:              ℒ(Hp) ← 
14:              ℒ ← ℒ + ℒ(Hp)
15:         end for
16:         Update θOtarNet using △ℒ
17:    end for
18: until the evaluation results on the validation set drop 
continuously or this process has been iterated for Nepoch times

V.	 Experiments

A.	Datasets
We evaluate the OtarNet on three widely used benchmarks, 

including Twitter-15 [48], Twitter-17 [49] and Yelp2. Their introduction 
are shown in Table I, with details displayed as follows:

TABLE I. Differences of Benchmarks

Datasets Twitter-15 Twitter-17 Yelp

Data Source Tweets in  
2014-2015

Tweets in  
2016-2017 Yelp Reviews

ContextSource NA Text 
Generation

NA Text 
Generation CrowdSourcing

Annotation 
Method Nichesourcing Nichesourcing CrowdSourcing

Aspect 
Categories Open Domain Open Domain Services

Class Number 3 3 5

2  https://www.yelp.com/dataset
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1.	Twitter-15 and Twitter-17
These two sets consist of tweets including text and images posted 

during 2014-2015 and 2016-2017 respectively, whose sentiment labels 
over targets(i.e., entities in text), assigned from set {negative, neutral, 
positive} were supplemented later by [4]. The context information 
is collected by [34], which leveraged an object-aware transformer 
followed by a single-pass non-autoregressive text generation approach. 
The sentiment polarities toward each target were labeled by taking 
the majority label among three domain experts (Nichesourcing). The 
aspect categories contain various internet figures or events. Their 
statistics are displayed in Table II.

TABLE II. Statistics of Twitter Dataset

DataSet Split Positive Neutral Negative Total

Twitter15

Training 928 1883 368 3179

Validation 303 670 149 1122

Test 317 607 113 1037

Twitter17

Training 1508 1638 416 3562

Validation 515 517 144 1176

Test 493 573 168 1234

2.	Yelp
The third dataset we use is Yelp corpora obtained from Yelp 

Dataset Challenge. This corpora contains elaborate information on 
businesses across 10 cities, where we leverage complement reviews, 
photos, and corresponding captions. The sentiment polarities are 
labeled by directly taking the user ratings (from 1-5), and the task is 
a standard five-class classification problem. The evaluated categories 
are restricted to the provided services, such as their food, drink, 
environment, etc. Compared to Twitter sets, Yelp performs more fine-
grained classification (5-class) based on well-organized reviews for 
specific domains. The statistics of Yelp are displayed in Table III.

TABLE III. Statistics of Yelp Dataset

Ratings Training Set Testing Set Validation Set Total
1 1248 384 387 2019
2 774 291 256 1321
3 1926 699 628 3253
4 504 164 177 845
5 1737 531 597 2865

Total 6189 2069 2045 10303

B.	Evaluation Metrics
Following the previous work [4], [34], [50], we adopt Accuracy and 

Macro-F1 score (M-F1 for short) as our evaluation metrics. Accuracy 
can be calculated as follows:

where C is the category numbers, |Dtest| is the total sample numbers 
in the test set. TPi , TNi are the numbers of True Positive and True 
Negative samples for the i-th category. To calculate Macro-F1, we 
firstly need to calculate the F1 score for each category based on 
their scores of precision and recall. The calculation of F1 for the i-th 
category F1i is defined as:

where TPi, FPi, FNi, TNi are the numbers of True Positive, False 
Positive, False Negative and True Negative samples for the i-th 
category. Based on the obtained F1 scores of each class, the Macro-F1 
is defined as an average based on the categories:

C.	Experimental Settings
In our implementation, all the experiments are conducted with 

Pytorch on one 32G Tesla V100 GPU. We initialized pretrained 
weights of language models from HuggingFace3. As displayed in Table 
IV, the batch size is set as 32, and the maximum number of training 
epochs is set to 9. We apply the early stop strategy to avoid over-
fitting. We train the models with an Adam weight decay optimizer 
with an initial learning rate of 5e-5. The optimal hyper-parameters are 
obtained by grid search. To ensure further reliability of our results and 
facilitate later explorations, we make our codes publicly available at  
https://github.com/TomatoNLPer/OTarNet

For the input images, we adopt a pre-trained ResNet-1524, which 
outputs a feature map of size 7 × 7 × 2048, indicating 49 block regions 
with depth dv as 2048. For the input text, we maintain the standard 
configuration of BERT/RoBERTa and stack 12 BERT layers. The feature 
dimension of hidden state output by one BERT layer dh is 768, which 
is calculated by inner multi-head attention with m = 12 heads. We 
then truncate the max input length N1 and the max bridge sentence 
length N2 to 125. Besides, the other settings of hyperparameters during 
the training process are displayed in Table IV.

TABLE IV. Hyperparameter Settings

Hyperparameter Symbol Value

Epochs E 9

Batchsize B 32

Dropout d 0.15

Learning Rate lr 5e-5

OTI layer LOTI 1

ME Layer LME 1

Weight Decay Wd 0.01

Optimizer - AdamW

BERT Weights - bert-base-uncased

RoBERTa Weights - bertweet-base

D.	Model Zoo
In this subsection, we will give comprehensive introductions to the 

leveraged baseline models, including:

•	 EF-Net: An attention capsule extraction and multi-head fusion 
network for MABSA, which is established based on multi-head 
attention (MHA) and the ResNet-152

•	 Res-MGAN: A combination of textual and visual contents from 
ResNet and MGAN. It is implemented by concatenating the pooling 
results of ResNet and MGAN, which is a multi-grained attention 
network proposed in [51] for fusing the target and the context.

•	 Res-BERT + BL: Similar to Res-MGAN, Res-BERT + BL is a 
combination of textual and visual content from ResNet and BERT. 
BL denotes another BERT layer on the top, which is leveraged for 
feature fusion.

•	 mPBERT: A variant of mBERT, which uses the max pooling 
of visual features and first token pooling ([CLS]) to obtain the 
final output.

3  https://huggingface.co/models
4  https://download.pytorch.org/models/resnet152-b121ed2d.pth
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•	 RelConsTransLG: A constituent-based transformer, which 
applies meta auxiliary learning to generate labels on edges 
between tokens, and can induce constituents without constituent 
parsers for MABSA.

•	 TomBERT5: A multimodal backbone leveraging a target attention 
mechanism to perform target-image matching, which is helpful 
for deriving target-sensitive visual representations.

•	 EF-CapTrBERT6: A two-stream multimodal backbone, which 
leverages space translation to construct an auxiliary sentence for 
language models.

E.	 Overall Performance
We compare OtarNet against a collection of neural network based 

or modified transformer models designed for multimodal aspect-based 
sentiment analysis. The model performance on three benchmark 
datasets is displayed in Table V, in which the Twitter results of 
compared models are directly quoted from published articles, and the 
Yelp results are obtained through our reimplementation [52].

Based on the displayed experimental results we can make a couple of 
observations: (1) Our model OtarNet outperforms former multimodal 
models and achieve the new SOTA performance on three benchmark 
datasets, demonstrating the effectiveness of our work. (2) Compared to 
the second-best model, our OtarNet further enhance the performance 
by a margin and achieve an average of 2.91%, 5.56%, and 2.04% 
performance improvement respectively on the three datasets from 
the perspective of Macro-F1, which further indicates the effectiveness 
of our framework.(3) Since the corpora of Twitter datasets inevitably 
contains noisy UGC on Twitter websites, the model performance is 
relatively lower than those in well organized Yelp dataset.

F.	 Further Analysis
The previous SOTA model EF-CapTrBERT is sub-optimal, which 

leverages distilled visual knowledge to perform the early fusion. The 
degradation may come from the noise during distillation and the lack 
of complementary details from the visual stream. Thus EF-CapTrBERT 
finally achieved competitive results to a variation of our model OtarNet 
+ T-Trans, which adopt similar settings to merely transport target 
knowledge to the text modality. And another competitive baseline 
TomBERT leverage cross-model attention mechanisms to realize 

5  https://github.com/jefferyYu/TomBERT
6  https://github.com/codezakh/exploiting-BERT-thru-translation

target-sensitive visual representations. Their methods neglect the 
process of maintaining target sensitivity in linguistic encoding, which 
is a main difference that leads to limited performance. Compared 
to previous SOTA TomBERT, EF-CapTrBERT, and our variations, 
the performance improvements of OtarNet + M-Trans confirm the 
achievements of our goals, including maintaining target sensitivity 
and complementary knowledge transportation, which get further 
verification and analysis in the following ablations and visualizations.

G.	Effectiveness of Target Knowledge Transportation
To achieve the objective of transporting target category knowledge 

in visual components, we exploit a transformer-style architecture 
to distill the object-level target information in complex visuals. The 
overall procedure is displayed in Fig. 3. Contrastively, we conduct 
ablation experiments on three test sets by decomposing the Input 
Space Translation Module. Specifically, different transportation plans 
are closely attempted, including T-Trans, I-Trans and M-Trans, which 
means transporting the target information into different modalities 
(Text, Image, Multimodal) to explore the effectiveness of bidirectional 
target knowledge transportation.

As shown in Table V, all the settings of multimodal data with different 
transportation settings achieve better performance compared to those 
without target knowledge, which can well confirm the bridge effect in 
fusing information from multiple modalities. For the transportation 
plans of target knowledge, M-Trans achieves expected predominant 
results compared to models with other settings, which turns out that 
bidirectional integration can achieve better accomplishment for the 
goal of incorporating target knowledge, and function better bridge 
effect compared to unimodal transportation plans.

To provide a more intuitive comparison, we provide attention maps 
in Fig. 4 for the weights in the matrix of optimal transportation plans. 
With the transportation of distilled visual information (b), OtarNet 
pays more attention to the sentiment target in visuals compared to (a). 
The comparison results are explicitly met with our goal of maintaining 
target sensitivity.

H.	Effectiveness of Optimal Transport Interaction
We decompose the optimal transport interaction into two single 

parts, including Image_to_Text transportation (IOT) and Text_to_
Image transportation (TOI), then add one or both of them to OtarNet 
to demonstrate the effectiveness of transport modules. To make a 
further step, we explore two ways of input to produce different query 

TABLE V. Overall Performance on Two Twitter Datasets and Yelp

Comparisons Model
Twitter-15 Twitter-17 Yelp

Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1

Baselines

Res-MGAN [4] 71.65 63.88 66.37 63.04 80.62 71.37

EF-Net [50] 73.65 67.90 67.77 65.32 81.33 71.50

Res-BERT+BL [4] 75.02 69.21 69.20 66.48 80.93 71.75

mPBERT(CLS) [48] 75.79 71.07 68.80 67.06 79.81 68.52

RelConsTransLG [53] 76.80 73.30 69.80 68.50 80.15 68.25

TomBERT(FIRST) [4] 77.25 71.75 70.34 68.03 81.46 73.44

EF-CapTrBERT [34] 78.35 73.61 69.93 68.90 82.14 74.15

Ours

OtarNet - TG 74.67 69.33 68.34 67.52 78.87 71.67

OtarNet + T-Trans 78.23 72.94 72.54 70.68 81.67 74.68

OtarNet + I-Trans 76.48 70.33 69.68 68.27 80.85 73.11

OtarNet + M-Trans 80.63 76.32 74.57 72.73 84.83 76.66
Margin δours-second_best △2.28 △2.71 △4.23 △3.83 △2.69 △1.51

The numbers in bold face denotes the best results, The numbers in bold face denotes the best results in Baselines
TG denotes the Target Knowledge obtained through the input space translation module.
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vectors for transport plans, which further explains the combined effect 
of the target knowledge and optimal transport interaction.

Depicted by the results of accuracy (ACC.) and Macro-F1 (F1 )in 
Table VI, outputs with bidirectional optimal transport interaction 
achieve the best performance improvement due to the bidirectional 
complementary knowledge transportation. The superiority of OtarNet 
+ Bi-CKT indicates that, the proposed Optimal Transport Interaction 
method succeeds in transporting the inter-modal complementary 
knowledge, and produces hybrid features with more comprehensive 
information for analyzing targets’ sentiment. Besides, we also perform 
an ablation study and deepen the block architecture by removing or 
stacking the same transport layer, as Fig. 5 shows. The ablation of the 
OTI layer naturally brings performance degradation. Nevertheless, 
we observe little or tiny performance boost with a deeper interaction 
module, indicating that two layers of optimal transport interaction 
are sufficient for transporting complementary knowledge. This may 
be because the caption carrying part of the target information, as 
enhanced image attributes, has interacted with linguistic information 
through input space translation. [34].

TABLE VI. Effectiveness of Optimal Transport Interaction

Datasets &Methods
Twitter-15 Twitter-17 Yelp

ACC. F1 ACC. F1 ACC. F1
OtarNet - CKT 76.82 73.74 72.01 69.84 83.24 75.53

OtarNet + TOI-CKT 78.25 74.32 72.37 71.25 83.75 76.14
OtarNet + IOT-CKT 78.73 74.57 72.98 71.65 83.55 75.74
OtarNet + Bi-CKT 80.63 76.32 74.57 72.73 84.83 76.66

CKT is the abbreviation for complementary knowledge transportation. 
TOI-CKT refers to Text_to_Image knowledge transportation, IOT-
CKT refers to Image_to_Text transportation, and Bi-CKT refers to the 
bidirectional optimal transport interaction.
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Fig. 5. Layer settings of optimal transport interaction module and results on 
Yelp test set.

I.	 Effectiveness of Multimodal Feature Transfusion
In this section, we conduct two main experiments on the Yelp 

dataset for the multi-head attention-based fusion (MHAF) module 
to validate the effectiveness and find the best settings. We ablate the 
MHAF module and feed multiple types of features to the classifier. The 
results are shown in Fig. 6.
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Fig. 6. Ablation studies for multimodal feature fusion layer. The accuracy 
results on the Yelp test set are displayed. TA denotes the Target-Agnostic 
feature, acquired by base encoders without target-oriented knowledge 
transportation. TS denotes the Target-Sensitive feature, acquired by the target 
interaction modules without complementary knowledge transportation. And 
OTA, OTS are the TA, TS features after OT interaction.

Conclusions can be made that the Multimodal-OTS feature is 
definitely more representative to provide discriminative details for 
classification. The multi-head attention-based feature fusion (MHAF) 
module effectively receives an average performance boost of 2.90% 
due to the inner interactive mechanism. To make a further exploration 
for the depth of the MHAF module, we add the inner attention layers 
to conduct another experiment, the results of which are shown in Fig. 
6. However, as the same result in OTI, we find the model performance 
drops slightly or grows at a very slow pace.

J.	 Qualitative Analysis
In this section, we present some examples from trained models 

to provide several qualitative analyses, including a case study and 
attention maps to better understand what OtarNet has learned.

1.	Case Study
Fig. 7 shows two predictions with the text attention visualizations 

of OtarNet. The displayed representative samples confirm the 
peculiarity that images focus more on targets while sentences express 
opinions. This peculiarity emphasizes the necessity of transporting 
complementary knowledge in different modalities of information. 
This objective is achieved by OtarNet through the Optimal Transport 
Kernel method, and can be reflected by text attention visualizations, 
in which key opinion words in sentences are successfully captured. 
Results are obtained through Text-BERT, Multimodal-BERT, and 
our OtarNet, which incorporate different input information. For the 
confusing information (e.g., ’Best Independent Film for Fruitvale’) 
in unimodal, Text-BERT fails to leverage the combined effect from 
multiple sources and Multimodal-BERT may misunderstand the key 
target in visuals. However, our OtarNet with multiple knowledge 
transportation leveraging context information succeeds to catch the 
key differences and make accurate predictions.

(a) Attention weights without target 
knowledge transportation

(b) Attention weights with target 
knowledge transportation

Fig. 4. In this sample, the distilled target knowledge through S_trans in (1) is: 
A girl sitting on the ground with a baseball bat. As the attention map in 
(a), the visual features without target knowledge are less discriminative. By 
integrating the distilled context information, OtarNet captures better visual 
semantics as shown in (b). More visualizations are provided in the later section 
of Qualitative Analysis.



- 9 -

Article in Press

Inputs

Text A�ention

Ground Truth (1)-POS, (2)-NEU

(1)-POS , (2)-NEU 

(1)-POS , (2)-NEU 
(1)-POS , (2)-POS 

(1)-NEU , (2)-NEU 
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Text-Bert
Multimodal-Bert

OtarNet

Fig. 7. Examples that text-only or classic multimodal BERT with text and 
image make the wrong predictions, but our proposed approach with context 
information insertion gets correct. The text attention indicates the importance 
of different words computed by the OtarNet.

2.	Visualizations
In order to further validate the combined effect between images 

and text, we visualize the obtained attention weights of block regions 
in the visual feature map as shown in Fig. 8. And it is obvious that 
some key factors in pictures like emotions or actions are necessary to 
infer the implicit sentiment in text. Specifically, for the target ’NFL’ in 
the first example, it’s nearly impossible to infer the implied negative 
orientation based only on text modality. Nevertheless, with the action 
of clutching her chest and the pained expression on her face in the 
picture, our OtarNet can make the correct prediction. Similar examples 
are displayed in Fig. 8, which demonstrates that our OtarNet has the 
ability to capture key details in visual features helpful for judgment.

Sentiment Target
Positive Negative

NFL
When a guy you 

used to talk to got 
dra	ed to the NFL

A woman si�ing on
a bench clutching

her chest

Might take a flight out
for the weekend, and go

Cannes - cause I can

Frank De�ori wins the
Dante Stakes on Wings of
Desire! What a week this

man is having!

Happy birthday, 
Vince Gilligan!

Happy birthday, master!

Uproar in front of
Confederation of
Progressive Trade

Unions

Eric Church Will Rock
the Taste of Country

Music Festival as
2018 Headliner!

A man in a black
shirt and a guitar
and microphones

A woman carrying
a li�le girl si�ing on

the grass

            can’t wait for
another summer of

concerts and fun w beano
bag @ BellaRusso14

A man wearing a 
helment and sunglasses

and a baseball cap

A man smiling in
a blue jacket

A woman crying on
the ground with a
man and a woman

by her side

A woman is 
jumping high 
on the beach

Cannes

Frankie De�ori

Vince Gilligan

Eric Church

BellaRusso 14

Confederation of
Progressive Trade

Unions

Generated
Caption

A�ention
visualizationInput Text Input Image

Fig. 8. Attention map of several examples in the Twitter dataset. The auxiliary 
sentences provided by the non-autoregressive text generator are also 
provided. We select the top-K values in the optimal transportation plans to 
make visualizations, which can partly reflect what the OtarNet has learned to 
integrate. The displayed results confirm the model’s capacity of capturing key 
details in visual features.

VI.	Conclusion

This paper proposes a novel OtarNet for multimodal aspect-based 
sentiment analysis. Different from previous works, which are suffering 
from the problems of lacking target interaction and distributional 
modality gap, our OtarNet leverage multi-stage interaction 
mechanisms to transport knowledge from multiple perspectives for 
solving the issues above. To maintain interactions with aspect terms 
for target sensitivity, we leverage an input space translation and 
multistage interaction method to capture the intra-modality target 
knowledge of social media content. To capture the inter-modality 
complementary knowledge, OtarNet exploits a novel approach of the 
Optimal Transport Kernel method. Compared to attention mechanisms 
guided by task-specific loss only, OtarNet based on Optimal Transport 
offers additional signals by reformulating the multimodal fusion as 
a transportation problem. Experiments on three real-world datasets 
demonstrate the effectiveness and superiority of our model, which 
gets further indicated in the ablation study and visualizations. In 
general, OtarNet exhibits excellent effectiveness in the fine-grained 
sentiment analysis of open-domain social media content and cross-
modal complementation. In the future, we will consider designing 
models with other ways of interaction, including graph aggregation 
or loss regulations. We also plan to apply our model to solve related 
problems such as fine-grained multimodal aligning in hate detection, 
as well as multi-lingual applications under low-resource language 
scenarios. We are also interested in incorporating data from other 
sources such as speeches or videos.
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