• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2021
    • vol. 6, nº 7, september 2021
    • Ver ítem
    •   Inicio
    • UNIR REVISTAS
    • Revista IJIMAI
    • 2021
    • vol. 6, nº 7, september 2021
    • Ver ítem

    Modeling of Performance Creative Evaluation Driven by Multimodal Affective Data

    Autor: 
    Wu, Yufeng
    ;
    Zhang, Longfei
    ;
    Ding, Gangyi
    ;
    Xue, Tong
    ;
    Zhang, Fuquan
    Fecha: 
    09/2021
    Palabra clave: 
    performance creative evaluation; multimodal affective feature; multimedia acquisition; data-driven; affective acceptance; IJIMAI
    Revista / editorial: 
    International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI)
    Tipo de Ítem: 
    article
    URI: 
    https://reunir.unir.net/handle/123456789/13002
    DOI: 
    https://doi.org/10.9781/ijimai.2021.08.005
    Dirección web: 
    https://www.ijimai.org/journal/bibcite/reference/2988
    Open Access
    Resumen:
    Performance creative evaluation can be achieved through affective data, and the use of affective featuresto evaluate performance creative is a new research trend. This paper proposes a “Performance Creative—Multimodal Affective (PC-MulAff)” model based on the multimodal affective features for performance creative evaluation. The multimedia data acquisition equipment is used to collect the physiological data of the audience, including the multimodal affective data such as the facial expression, heart rate and eye movement. Calculate affective features of multimodal data combined with director annotation, and defined “Performance Creative—Affective Acceptance (PC-Acc)” based on multimodal affective features to evaluate the quality of performance creative. This paper verifies the PC-MulAff model on different performance data sets. The experimental results show that the PC-MulAff model shows high evaluation quality in different performance forms. In the creative evaluation of dance performance, the accuracy of the model is 7.44% and 13.95% higher than that of the single textual and single video evaluation.
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    icon
    Nombre: ijimai6_7_9.pdf
    Tamaño: 4.756Mb
    Formato: application/pdf
    Ver/Abrir
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • vol. 6, nº 7, september 2021

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    43
    64
    113
    100
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    33
    51
    59
    60

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • STAIBT: Blockchain and CP-ABE Empowered Secure and Trusted Agricultural IoT Blockchain Terminal 

      Zhang, Guofeng; Chen, Xiao; Zhang, Lei; Feng, Bin; Guo, Xuchao; Liang, Jingyun; Zhang, Yanan (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 09/2022)
      The integration of agricultural Internet of Things (IoT) and blockchain has become the key technology of precision agriculture. How to protect data privacy and security from data source is one of the difficult issues in ...
    • Optimal Target-Oriented Knowledge Transportation For Aspect-Based Multimodal Sentiment Analysis 

      Zhang, Linhao; Jin, Li; Xu, Guangluan; Li, Xiaoyu; Sun, Xian; Zhang, Zequn; Zhang, Yanan; Li, Qui (International Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI), 02/2024)
      Aspect-based multimodal sentiment analysis under social media scenario aims to identify the sentiment polarities of each aspect term, which are mentioned in a piece of multimodal user-generated content. Previous approaches ...
    • Health care data analysis and visualization using interactive data exploration for sportsperson 

      Liu, Hao; Zhang, Y.; Lian, Ke; Zhang, Yifei; Sanjuán Martínez, Óscar ; González-Crespo, Rubén (Science Chin-Information Sciences, 2022)
      Sports have scored significant attention among the public in this multifaceted world. Diverse training strategies are followed by many athletics and even flexible to adapt comfortable and optimal techniques. This fact has ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja