Mostrar el registro sencillo del ítem

dc.contributor.authorZhang, Linhao
dc.contributor.authorJin, Li
dc.contributor.authorXu, Guangluan
dc.contributor.authorLi, Xiaoyu
dc.contributor.authorSun, Xian
dc.contributor.authorZhang, Zequn
dc.contributor.authorZhang, Yanan
dc.contributor.authorLi, Qui
dc.date2024-02
dc.date.accessioned2024-03-14T08:25:07Z
dc.date.available2024-03-14T08:25:07Z
dc.identifier.citationL. Zhang, L. Jin, G. Xu, X. Li, X. Sun, Z. Zhang, Y. Zhang, Q. Li. Optimal Target-Oriented Knowledge Transportation For Aspect-Based Multimodal Sentiment Analysis, International Journal of Interactive Multimedia and Artificial Intelligence, (2024), http://dx.doi.org/10.9781/ijimai.2024.02.005es_ES
dc.identifier.urihttps://reunir.unir.net/handle/123456789/16226
dc.description.abstractAspect-based multimodal sentiment analysis under social media scenario aims to identify the sentiment polarities of each aspect term, which are mentioned in a piece of multimodal user-generated content. Previous approaches for this interdisciplinary multimodal task mainly rely on coarse-grained fusion mechanisms from the data-level or decision-level, which have the following three shortcomings:(1) ignoring the category knowledge of the sentiment target mentioned in the text) in visual information. (2) unable to assess the importance of maintaining target interaction during the unimodal encoding process, which results in indiscriminative representations considering various aspect terms. (3) suffering from the semantic gap between multiple modalities. To tackle the above challenging issues, we propose an optimal target-oriented knowledge transportation network (OtarNet) for this task. Firstly, the visual category knowledge is explicitly transported through input space translation and reformulation. Secondly, with the reformulated knowledge containing the target and category information, the target sensitivity is well maintained in the unimodal representations through a multistage target-oriented interaction mechanism. Finally, to eliminate the distributional modality gap by integrating complementary knowledge, the target-sensitive features of multiple modalities are implicitly transported based on the optimal transport interaction module. Our model achieves state-of-theart performance on three benchmark datasets: Twitter-15, Twitter-17 and Yelp, together with the extensive ablation study demonstrating the superiority and effectiveness of OtarNet.es_ES
dc.language.isoenges_ES
dc.publisherInternational Journal of Interactive Multimedia and Artificial Intelligence (IJIMAI)es_ES
dc.relation.ispartofseries;In Press
dc.rightsopenAccesses_ES
dc.subjectaspect-based multimodal sentiment analysis,es_ES
dc.subjectoptimal transportes_ES
dc.subjectsocial media opinion mininges_ES
dc.titleOptimal Target-Oriented Knowledge Transportation For Aspect-Based Multimodal Sentiment Analysises_ES
dc.typearticlees_ES
reunir.tag~IJIMAIes_ES
dc.identifier.doihttp://dx.doi.org/10.9781/ijimai.2024.02.005


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem