• Mi Re-Unir
    Búsqueda Avanzada
    JavaScript is disabled for your browser. Some features of this site may not work without it.
    Ver ítem 
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem
    •   Inicio
    • RESULTADOS DE INVESTIGACIÓN
    • Artículos Científicos WOS y SCOPUS
    • Ver ítem

    QEST: Quantized and Efficient Scene Text Detector Using Deep Learning

    Autor: 
    Manjari, Kanak
    ;
    Verma, Madhushi
    ;
    Singal, Gaurav
    ;
    Namasudra, Suyel
    Fecha: 
    2023
    Palabra clave: 
    Additional Key Words and PhrasesDeep neural network; edge computing; floating point operations per second; inference time; model quantization; resource constrained; Scopus; JCR
    Revista / editorial: 
    ACM Transactions on Asian and Low-Resource Language Information Processing
    Citación: 
    Manjari, K., Verma, M., Singal, G., & Namasudra, S. (2023). QEST: Quantized and efficient scene text detector using deep learning. ACM Transactions on Asian and Low-Resource Language Information Processing, 22(5), 1-18.
    Tipo de Ítem: 
    Articulo Revista Indexada
    URI: 
    https://reunir.unir.net/handle/123456789/15644
    DOI: 
    https://doi.org/10.1145/3526217
    Dirección web: 
    https://dl.acm.org/doi/10.1145/3526217
    Resumen:
    Scene text detection is complicated and one of the most challenging tasks due to different environmental restrictions, such as illuminations, lighting conditions, tiny and curved texts, and many more. Most of the works on scene text detection have overlooked the primary goal of increasing model accuracy and efficiency, resulting in heavy-weight models that require more processing resources. A novel lightweight model has been developed in this article to improve the accuracy and efficiency of scene text detection. The proposed model relies on ResNet50 and MobileNetV2 as backbones with quantization used to make the resulting model lightweight. During quantization, the precision has been changed from float32 to float16 and int8 for making the model lightweight. In terms of inference time and Floating-Point Operations Per Second, the proposed method outperforms the state-of-The-Art techniques by around 30-100 times. Here, well-known datasets, i.e., ICDAR2015 and ICDAR2019, have been utilized for training and testing to validate the performance of the proposed model. Finally, the findings and discussion indicate that the proposed model is more efficient than the existing schemes.
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    icon
    Nombre: Versión aceptada_QEST.pdf
    Tamaño: 1.556Mb
    Formato: application/pdf
    Ver/Abrir
    Este ítem aparece en la(s) siguiente(s) colección(es)
    • Artículos Científicos WOS y SCOPUS

    Estadísticas de uso

    Año
    2012
    2013
    2014
    2015
    2016
    2017
    2018
    2019
    2020
    2021
    2022
    2023
    2024
    2025
    Vistas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    4
    60
    110
    Descargas
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    0
    8
    133
    184

    Ítems relacionados

    Mostrando ítems relacionados por Título, autor o materia.

    • Improving security of medical big data by using Blockchain technology 

      Sharma, Pratima; Borah, Malaya Dutta; Namasudra, Suyel (Elsevier Ltd, 2021)
      Big data refers to a very large and diverse set of data that grow at exponential rates. In the modern healthcare system, medical big data face many security issues due to the presence of hackers and malicious users. Nowadays, ...
    • A robust drug recall supply chain management system using hyperledger blockchain ecosystem 

      Agrawal, Divyansh; Minocha, Sachin; Namasudra, Suyel ; Gandomi, Amir H. (Elsevier Ltd, 2022)
      Drug recall is a critical issue for manufacturing companies, as a manufacturer might face criticism and severe business downfall due to a defective drug. A defective drug is a highly detrimental issue, as it can cost several ...
    • Introduction to the special section on advances of machine learning in cybersecurity (VSI-mlsec) 

      Namasudra, Suyel; González-Crespo, Rubén ; Kumar, Sathish (Computers and Electrical Engineering, 2022)
      With the rapid advancement of emerging technologies, such as Internet of Things (IoT), cloud computing, and many more, a huge amount of data is generated and processed in daily life. As these technologies are based on the ...

    Mi cuenta

    AccederRegistrar

    ¿necesitas ayuda?

    Manual de UsuarioContacto: reunir@unir.net

    Listar

    todo Re-UnirComunidades y coleccionesPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de accesoEsta colecciónPor fecha de publicaciónAutoresTítulosPalabras claveTipo documentoTipo de acceso






    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja
     
    Aviso Legal Política de Privacidad Política de Cookies Cláusulas legales RGPD
    © UNIR - Universidad Internacional de La Rioja