Mostrar el registro sencillo del ítem
Lagrangian-Hamiltonian formalism for cocontact systems
dc.contributor.author | Rivas, Xavier | |
dc.contributor.author | Torres, Daniel | |
dc.date | 2023 | |
dc.date.accessioned | 2023-07-18T13:56:31Z | |
dc.date.available | 2023-07-18T13:56:31Z | |
dc.identifier.citation | Xavier Rivas, Daniel Torres. Lagrangian–Hamiltonian formalism for cocontact systems[J]. Journal of Geometric Mechanics, 2023, 15(1): 1-26. doi: 10.3934/jgm.2023001 | es_ES |
dc.identifier.issn | 1941-4889 | |
dc.identifier.uri | https://reunir.unir.net/handle/123456789/15075 | |
dc.description.abstract | In this paper we present a unified Lagrangian–Hamiltonian geometric formalism to describe time-dependent contact mechanical systems, based on the one first introduced by K. Kamimura and later formalized by R. Skinner and R. Rusk. This formalism is especially interesting when dealing with systems described by singular Lagrangians, since the second-order condition is recovered from the constraint algorithm. In order to illustrate this formulation, some relevant examples are described in full detail: the Duffing equation, an ascending particle with time-dependent mass and quadratic drag, and a charged particle in a stationary electric field with a time-dependent constraint. | es_ES |
dc.language.iso | eng | es_ES |
dc.publisher | Journal of Geometric Mechanics | es_ES |
dc.relation.ispartofseries | ;vol. 15, nº 1 | |
dc.relation.uri | http://www.aimspress.com/article/doi/10.3934/jgm.2023001 | es_ES |
dc.rights | openAccess | es_ES |
dc.subject | contact structure | es_ES |
dc.subject | Lagrangian and Hamiltonian formalisms | es_ES |
dc.subject | timedependent system | es_ES |
dc.subject | dissipation | es_ES |
dc.subject | Scopus | es_ES |
dc.title | Lagrangian-Hamiltonian formalism for cocontact systems | es_ES |
dc.type | Articulo Revista Indexada | es_ES |
reunir.tag | ~ARI | es_ES |
dc.identifier.doi | https://doi.org/10.3934/JGM.2023001 |